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0. Introduction

The aim of this paper is to apply some ideas coming from several complex variables and
from complex differential geometry to questions about Teichmüller spaces.

Differential geometrical techniques have played a significant role in the study Te-
ichmüller spaces. In fact, at least since the work of Kravets ([Kra]), it was understood
that the Teichmüller metric — though not Riemannian — may be considered in the frame-
work of differential geometry as a Finsler metric. The difficulty of this approach has advised
to pursue other directions which led for instance to the definition of the Weil-Petersson
metric which, being Kählerian, behaves much better and it is quite useful in a number of
applications. On the other hand, the fundamental work of Royden ([R1]), who realized
that the Teichmüller metric is exactly the Kobayashi metric of a Teichmüller space (see
Gardiner [G] for the infinite dimensional case), shows that the Teichmüller metric not only
is naturally defined, but it is also deeply related to the complex structure. For instance,
as a consequence of this result, Royden was able to compute the automorphism group
of finite dimensional Teichmüller spaces. Furthermore Royden (again [R1]) proved that,
in the finite dimensional case, the Kobayashi-Teichmüller metric has a certain amount of
smoothness which makes reasonable to address in terms of curvature questions such as
existence of isometries. In this regard Royden conjectured that Teichmüller disks, which
are isometries at one point from the unit disk into a Teichmüller space, are in fact global
isometries with respect to the hyperbolic distance of the disk and the Teichmüller dis-
tance. In relation to this conjecture he studied the geometry of complex Finsler metrics
([R2]) and, under some further assumptions, was able to prove that Teichmüller disks are
infinitesimal isometries at every point. The conjecture was later fully proved in [EKK]
using different methods.

Motivated mainly by the goal of achieving a better understanding of the Kobayashi
metric and of its applications in function theory, recently we made an effort to develop
an efficient approach to complex Finsler geometry (see [AP]). Some progresses made in
this direction suggested to return to Royden’s original ideas and search for new possible
applications in Teichmüller theory. First of all it is of interest to understand exactly
the role of the curvature of Teichmüller metric. It is known that it is not true that
Teichmüller spaces have nonpositive sectional curvature, and so they are not “hyperbolic”
in the usual, “real”, sense ([MW]). But, on the other hand, they have several properties
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in common with hyperbolic manifolds. It turns out that Teichmüller spaces have constant
negative holomorphic curvature and therefore are definitely (Kobayashi) hyperbolic from
the complex point of view. Here we provide a proof (both in the finite and in the infinite
dimensional case) for this fact, that may already be known but does not seem to be
stated in the literature. As a consequence, without unnecessary hypotheses, it is easy to
show that Teichmüller disks are infinitesimal isometries. As in other situations ([AP]), for
topological reasons, this is not enough to conclude that they are isometries for the distances
and therefore it does not seem to be not possible to recover the full Royden conjecture via
differential geometry only.

Another useful guideline is to remember that the Bers realization of Teichmüller spaces
is a pseudoconvex domain in a complex (Banach) space and therefore it carries a nice com-
plex analytic function theory. Inspired by similar results in several complex variables we
tried to characterize Teichmüller spaces in terms of isometries of intrinsic metrics. Gen-
eralizing Royden’s theorem ([R1]) on isometries, our main result in the finite dimensional
case is the following:

Theorem 0.1: A taut connected complex manifold N is biholomorphic to a finite dimen-
sional Teichmüller space T (Γ) if and only if there exists a holomorphic map F :N → T (Γ)
which is an isometry for the Kobayashi metric at one point.

The proof depends strongly on the uniqueness of extremal disks, and so cannot be
applied to the infinite dimensional case, where, as additional difficulty, a satisfactory theory
of holomorphic mappings is yet to be developed. Nevertheless, again in the vein of Royden’s
work, we have the following partial result.

Theorem 0.2: Let T (Γ1) and T (Γ2) be infinite dimensional Teichmüller spaces. Then a
holomorphic map F :T (Γ1)→ T (Γ2) is biholomorphic if and only if it satisfies the following
assumptions:

(i) F is a Fredholm map of index 0, i.e., dim Ker dFx = dim Coker dFx <∞ for all x ∈M ;

(ii) F has discrete fibers and closed image;

(iii) F is an isometry for the Kobayashi-Teichmüller metric at one point.

Most likely Theorem 0.2 may be improved, but to do so it is necessary a better
understanding of both function theory and differential geometry of Teichmüller spaces in
the infinite dimensional case. The latter could be quite illuminating although there is the
additional difficulty that in this case the Teichmüller metric is not even C1 ([Zh]).

We feel that it may be fruitful to further pursue the application in Teichmüller theory
of ideas coming from several complex variables and complex differential geometry. For
instance, the Bers realization of a finite dimensional Teichmüller space is a very interesting
bounded pseudoconvex topologically trivial domain in Cn whose function theory deserves
further study on his own.

The paper is organized as follows. In Section 1 there is a quick outline of the necessary
notions of complex Finsler geometry. Section 2 and 3 are devoted to the study of the
Kobayashi-Teichmüller metric with regard to curvature and complex geodesics. Precise
statement and proofs of Theorem 0.1 and 0.2 are in Section 4.
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1. Complex Finsler metrics

We shall need some facts about complex Finsler geometry and intrinsic metrics on complex
manifolds of finite and infinite dimension. Most of them are standard, but not easy to find
in the literature for the infinite dimensional case; so, for reader’s convenience and to set
notations, in this section we give a short overview of the subject.

A complex Finsler metric F on a complex (Banach) manifold M is an upper semicon-
tinuous function F :T 1,0M → R+ satisfying
(i) F (p; v) > 0 for all p ∈M and v ∈ T 1,0

p M with v 6= 0;
(ii) F (p;λv) = |λ|F (p; v) for all p ∈M , v ∈ T 1,0

p M and λ ∈ C.

We shall systematically denote by G:T 1,0(M) → R+ the function G = F 2. Using condi-
tion (ii) and the usual identification between real and holomorphic tangent bundles, the
definition of length of a smooth curve in a Riemannian manifold makes sense in this con-
text too; so we may again associate to F a topological distance on M , and we shall say
that F is complete if this distance is. For the same reason, it makes sense to call (real)
geodesics the extremals of the length functional. For an introduction to real and complex
Finsler geometry (in the finite dimensional case) we refer to [AP].

An important role in the study of complex Finsler metric is played by the notion of
holomorphic curvature. Let us start by considering the case of the unit disk ∆ in the
complex plane. A pseudohermitian metric µg of scale g on ∆ is the upper semicontinuous
pseudometric on the tangent bundle of ∆ defined by

µg = g dζ ⊗ dζ̄, (1.1)

where g: ∆→ R+ is a non-negative upper semicontinuous function such that Sg = g−1(0)
is a discrete subset of ∆.

If g is a C2 positive function (i.e., µg is a standard hermitian metric on ∆), then the
Gaussian curvature of µg is defined by

K(µg) = − 1
2g
4 log g, (1.2)

where 4 denotes the usual Laplacian

4u = 4
∂2u

∂ζ∂ζ̄
. (1.3)

In the general case (cf. [He]) we shall consider the (lower) generalized Laplacian of an
upper semicontinuous function u defined by

4u(ζ) = 4 lim inf
r→0

1
r2

{
1

2π

∫ 2π

0

u(ζ + reiθ) dθ − u(ζ)
}
. (1.4)

It is well known that for a function u of class C2 in a neighborhood of the point ζ0 the
Laplacian (1.4) actually reduces to (1.3).
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Let µg be a pseudohermitian metric on ∆. Then the Gaussian curvature K(µg) of µg is
the function defined on ∆\Sg by (1.2), using the generalized Laplacian (1.4). In particular,
if µg is a standard hermitian metric then K(µg) reduced to the usual Gaussian curvature.
It should be noted that this notion of holomorphic curvature is completely equivalent to
the classical one based on the consideration of supporting metrics (see [R2], [He]).

Now consider a complex manifold M with a complex Finsler metric F , and take
a point p ∈ M and a non-zero tangent vector v ∈ T 1,0

p M . The holomorphic curva-
ture KF (p; v) of F at (p; v) is given by

KF (p; v) = sup{K(ϕ∗G)(0)},

where the supremum is taken with respect to the family of all holomorphic maps ϕ: ∆→M
with ϕ(0) = p and ϕ′(0) = λv for some λ ∈ C∗, and K(ϕ∗G) is the Gaussian curvature
discussed so far of the pseudohermitian metric ϕ∗G on ∆.

Clearly, the holomorphic curvature depends only on the complex line spanned by v
in T 1,0

p M , and not on v itself. Furthermore, the holomorphic curvature defined in this
way is invariant under holomorphic isometries, and when F is a honest smooth hermitian
metric on M it coincides with the usual holomorphic sectional curvature of F at (p; v)
(see [Wu]).

We shall use the classical Ahlfors lemma which compares a generic pseudohermitian
metric with an extremal one (usually the Poincaré metric), and the important result of
Heins [He, Theorem 7.1; see also R3] which takes care of the case of equality of the metrics
at one point. For a > 0, let ga: ∆→ R+ be defined by

ga(ζ) =
1

a(1− |ζ|2)2
;

then µa = ga dζ ⊗ dζ̄ is a hermitian metric of constant Gaussian curvature K(µa) = −4a.
Of course, µ1 is the standard Poincaré metric on ∆.

Then Ahlfors’ and Heins’ results may be stated as follows:

Proposition 1.1: (Ahlfors-Heins’ Lemma) Let µg = g dζ ⊗ dζ̄ be a pseudohermitian
metric on ∆ such that K(µg) ≤ −4a on ∆ \ Sg for some a > 0. Then g ≤ ga. Assume
there is ζ0 ∈ ∆ \ Sg such that g(ζ0) = ga(ζ0). Then µg ≡ µa.

The notion of holomorphic curvature given for complex Finsler metrics gives immedi-
ately a version of Ahlfors’ Lemma even for the infinite dimensional case:

Proposition 1.2: Let F be a complex Finsler metric on a complex manifold M . Assume
that the holomorphic curvature of F is bounded above by a negative constant −4a, for
some a > 0. Then

ϕ∗F ≤ µa (1.5)

for all holomorphic maps ϕ: ∆→M .

Proof : By definition, ϕ∗F is a pseudohermitian metric on ∆; by assumption (and by the
invariance of the Gaussian curvature under automorphisms of ∆), K(ϕ∗F ) ≤ −4a. Then
the assertion follows from Proposition 1.1.
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As a consequence, we obtain a generalization of a well known criterion of hyperbolicity
for the infinite dimensional case as well:

Corollary 1.3: Let M be a complex manifold admitting a (complete) complex Finsler
metric F with holomorphic curvature bounded above by a negative constant. Then M is
(complete) hyperbolic.

Proof : Up to multiplying F by a suitable constant, we may assume KF ≤ −4. Let d denote
the distance induced by F on M , and ω the Poincaré distance on ∆. Then Proposition 1.2
yields

d
(
ϕ(ζ1), ϕ(ζ2)

)
≤ ω(ζ1, ζ2),

for all ζ1, ζ2 ∈ ∆ and holomorphic maps ϕ: ∆ → M . But this immediately implies
(cf. [K, Proposition IV.1.4]) that the Kobayashi distance kM of M is bounded below by d,
and the assertion follows.

For finite dimensional manifolds, Wong [W] and Suzuki [Su] have shown that the holo-
morphic curvature of the Carathéodory metric is bounded above by −4 for Carathéodory-
hyperbolic manifolds, whereas the holomorphic curvature of the Kobayashi metric is bound-
ed below by −4 for Kobayashi-hyperbolic manifolds.

Another interesting immediate consequence of Proposition 1.1 is an interpretation
(even in the infinite dimensional case) in terms of curvature of a well known property of
the Carathéodory metric. Let F be a complex Finsler metric on a manifold M . We shall
say that a holomorphic map ϕ: ∆ → M is infinitesimally extremal at ζ0 ∈ ∆ if it is an
isometry at ζ0 between the Poincaré metric on ∆ and F , that is if

ϕ∗F (ζ0; 1) = F
(
ϕ(ζ0);ϕ′(ζ0)

)
=

1
1− |ζ0|2

.

We shall say that ϕ is an infinitesimal complex geodesic if it is infinitesimally extremal at
every point of ∆. Then:

Proposition 1.4: Let F be a complex Finsler metric on a manifold M with holomorphic
curvature bounded above by −4. Let ϕ: ∆→M be a holomorphic map. Then the following
statements are equivalent:

(i) ϕ is infinitesimally extremal at one point ζ0 ∈ ∆;
(ii) ϕ is an infinitesimal complex geodesic.

Proof : By definition and the invariance of holomorphic curvature under automorphisms
of the unit disk, the Gaussian curvature of ϕ∗F is bounded above by −4. The assertion
then follows from Ahlfors-Heins’ Lemma.

We close this section with a remark about the behavior of the holomorphic curvature
for sequences of metrics which we shall need later.

Proposition 1.5: Let Fk be a sequence of complex Finsler metrics on a manifold M
with holomorphic curvature bounded above by −4 monotonically converging pointwise to
a complex Finsler metric F . Then the holomorphic curvature of F is still bounded above
by −4.

Proof : It follows from the definition of holomorphic curvature and the monotone conver-
gence theorem (cf. [He, 10.(c)]).
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2. Intrinsic metrics on the space of Beltrami differentials

Let H+ be the upper half plane in C, and let M denote the unit ball in L∞(H+,C).
Given µ ∈ M , let wµ be the unique quasiconformal homeomorphism of H+ fixing the
points 0, 1, ∞ and satisfying the Beltrami equation wz̄ = µwz. Then (see, e.g., [EE]) the
Teichmüller metric σ:T 1,0M ∼= M×L∞(H+,C)→ R+ is the complex Finsler metric on M
defined by

σ(µ; ν) =
∥∥∥∥ |ν|

1− |µ|2
∥∥∥∥
∞
, (2.1)

where ‖ · ‖∞ denotes the L∞ norm; note that |ν(z)|/(1− |µ(z)|2) is the Poincaré length of
the tangent vector ν(z) at the point µ(z) ∈ ∆. The Teichmüller distance on M is just the
integrated distance dσ of the Finsler metric σ. It is known that M with the Teichmüller
metric is a complete Finsler manifold, and it is easy to check that

dσ(µ1, µ2) = tanh−1

∥∥∥∥ µ1 − µ2

1− µ1µ2

∥∥∥∥
∞
. (2.2)

The group G of automorphisms of H+ acts naturally on M as a group of linear
isometries via the action

∀(A,µ) ∈ G×M (A,µ) 7→ µA =
(µ ◦A)Ā′

A′
. (2.3)

Now let Γ be a Fuchsian group, i.e., a subgroup of the automorphism group of H+ acting
properly discontinuously on H+. Then

L∞(Γ) =
{
µ ∈ L∞(H+,C)

∣∣ µ = µA ∀A ∈ G
}

(2.4)

is a closed subspace of L∞(H+,C), and hence the space of Beltrami differentials relative
to Γ defined by

M(Γ) = M ∩ L∞(Γ) (2.5)

is the unit ball in the Banach space L∞(Γ). Evidently M is the space of Beltrami differen-
tials relative to the trivial group. The Teichmüller metric and distance on M(Γ) — which
we denote again by σ and dσ respectively — are obtained by restriction, and again M(Γ)
is a complete Finsler manifold.

It turns out that the Teichmüller metric and distance on M(Γ) agree with the Ko-
bayashi and the Carathéodory metric and distance. This fact, partly observed in [EKK,
Proposition 1], is a direct consequence of more general results due to Harris [H] and Vesen-
tini [V]. In fact it is also a simple corollary of a theorem of Dineen-Timoney-Vigué ([DTV])
which says that the Kobayashi metric (distance) agrees with the Carathéodory metric (dis-
tance) on any convex set in a complex Banach space. Here we state the result precisely
and give a simple direct proof.
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Theorem 2.1: Let Γ be a Fuchsian group. Then the Teichmüller, Carathéodory and
Kobayashi metrics (distances) of M(Γ) coincide.

Proof : First of all we claim that that it is enough to prove the result at the origin (i.e.,
to show that Teichmüller, Kobayashi and Carathéodory metrics agree at the origin and
that Teichmüller, Kobayashi and Carathéodory distances from the the origin agree). To
this end observe that for any 0 6= µ ∈M(Γ) there exists a holomorphic automorphism Fµ
of M(Γ) defined by

Fµ(λ) =
µ− λ
1− µ̄λ .

Clearly Fµ(0) = µ; furthermore it is easy to check that Fµ is an isometry for both Te-
ichmüller metric and distance, and it is an isometry for Kobayashi and Carathéodory
metrics and distances being a biholomorphic map, so that our claim follows.

Now, it is well known (see for instance [A]) that the Kobayashi and Carathéodory
metric of a unit ball in a complex Banach space X at the origin agree with the norm ‖ · ‖
of X — and thus with the Teichmüller metric at the origin if X = M(Γ), by (2.1).
Analogously, it is also known (see again [A]) that the Kobayashi and Carathéodory distance
from the origin of the unit ball in X are given by tanh−1 ‖ · ‖, and thus they agree with
the Teichmüller distance from the origin if X = M(Γ), by (2.2).

Let F be a complex Finsler metric on a manifold M . We shall say that a holomorphic
map ϕ: ∆→M is extremal at ζ0 ∈ ∆ if

∀ζ ∈ ∆ dF
(
ϕ(ζ0), ϕ(ζ)

)
= ω(ζ0, ζ),

where dF is the distance induced by F and ω is the Poincaré distance. We shall say that ϕ
is a complex geodesic if it is extremal at all points of ∆, that is if it is a global isometry
between the Poincaré distance and dF .

An immediate consequence of Theorem 2.1 is the following:

Corollary 2.2: Let Γ be a Fuchsian group, and ϕ: ∆→M(Γ) a holomorphic map. Then
the following statements are equivalent:

(i) ϕ is infinitesimally extremal at one point with respect to the Teichmüller metric
of M(Γ);
(ii) ϕ is an infinitesimal complex geodesic with respect to the Teichmüller metric of M(Γ);
(iii) ϕ is extremal at one point with respect to the Teichmüller metric of M(Γ);
(iv) ϕ is a complex geodesic with respect to the Teichmüller metric of M(Γ).

Proof : Since the four properties are equivalent for the Carathéodory metric ([V]), the
claim is a consequence of Theorem 2.1.

3. Complex geodesics on Teichmüller spaces

Let us start by recalling a few facts about Teichmüller spaces, following [EE] and [G].
Let H− denote the lower half plane in C and consider the Banach space B = Hol(H−,C)
with the norm

||φ||B = sup
{
|z − z̄|2|φ(z)|

∣∣ z ∈ H−}. (3.1)
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Then G = Aut(H+) = Aut(H−) acts on B as a group of linear isometries via the action
G×B → B defined by

(A, φ) 7→ φA = (φ ◦A)(A′)2. (3.2)

If Γ ⊂ G is a Fuchsian group, we denote by B(Γ) the subspace of Γ-invariant functions,
i.e., the subspace

B(Γ) = {φ ∈ B | φ = φA}. (3.3)

If µ ∈ M then there exists a unique homeomorphism wµ of the Riemann sphere in itself
which leaves 0, 1, ∞ fixed and such that wµ is holomorphic on H− and wµ ◦ (wµ)−1 is
holomorphic on H+. Thanks to Nehari’s theorem a map Φ:M → B is well defined by
Φ(µ) = [wµ], where [ · ] denotes the Schwarzian derivative. The image T = Φ(M) of Φ is
called the universal Teichmüller space; if Γ is a Fuchsian group then

T (Γ) = Φ
(
M(Γ)

)
⊂ B(Γ)

is called the Teichmüller space of Γ. It is known that this presentation of Teichmüller spaces
is equivalent to the presentation as moduli spaces of Riemann surfaces. Furthermore Bers
has proved that the map Φ is continuous and holomorphic and that the holomorphic and
topological structures of T (Γ) are just the quotient structure induced by Φ:M(Γ)→ T (Γ).
We can then define the Teichmüller metric τΓ:T (Γ)×B(Γ)→ R on T (Γ) using the quotient
map Φ as follows:

τΓ(t;ψ) = inf
{
σ(µ; ν)

∣∣ µ ∈M(Γ), ν ∈ L∞(Γ) with t = Φ(µ), dΦµ(ν) = ψ
}
, (3.4)

where σ is the Teichmüller metric on M(Γ). Notice that (3.4) is well posed since σ is
invariant under right translations (see [EE] for details). In an analogous way one defines
the Teichmüller distance dτΓ :

dτΓ(s, t) = inf
{
dσ(α, β)

∣∣ α, β ∈M(Γ) with s = Φ(α), t = Φ(β)
}
. (3.5)

The Teichmüller distance is always complete. Furthermore, O’Byrne ([O]) proved
that in fact dτΓ is exactly the integrated distance of τΓ, as it is desirable. This is also
a consequence of the famous result of Royden ([R1]) which states that the Teichmüller
metric coincides with the Kobayashi metric of T (Γ). Actually Royden proved the equality
in the case of finite dimensional Teichmüller spaces only, but later Gardiner (see [G]), by
means of an approximation argument, proved that the equality also holds in the infinite
dimensional case. Gardiner’s argument has a consequence that we shall need later on:

Proposition 3.1: Let Γ be any Fuchsian group. Then the holomorphic curvature of the
Kobayashi-Teichmüller metric of T (Γ) is identically equal to −4. As a consequence, T (Γ)
is Kobayashi complete hyperbolic.

Proof : If T (Γ) is finite dimensional, then it is known that the holomorphic curvature of
finite dimensional Teichmüller spaces is bounded above by −4 ([G, Lemma 7.8]). Hence,
by Corollary 1.3, T (Γ) is complete hyperbolic so that the holomorphic curvature must also
be bounded below by −4 ([W], [Su]) and the claim follows. Let us assume that T (Γ) is
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not finite dimensional. Then, by Gardiner’s approximation procedure (see [G]), there exist
a sequence {Tj} of finite dimensional Teichmüller spaces and a sequence of holomorphic
maps πj :T (Γ) → Tj such that the pull-back metrics π∗j τΓj monotonically converge to τΓ.
Since, as already remarked, the holomorphic curvature of finite dimensional Teichmüller
spaces is bounded above by −4, Proposition 1.5 implies that the holomorphic curvature
of τΓ is bounded above by −4. In particular, by Corollary 1.3, T (Γ) is complete hyperbolic
in this case too.

To prove that the holomorphic curvature is bounded below by −4, fix [µ] ∈ T (Γ)
and ψ ∈ B(Γ) ∼= T 1,0

[µ] T (Γ). By [EE, Theorem 3.(c)], up to replacing Γ by an isomorphic
Fuchsian group we can assume that [µ] = Φ(0). Choose ν ∈ L∞(Γ) such that ψ = dΦ0(ν)
and τΓ([µ];ψ) = σ(0; ν); in other words, ν is infinitesimally extremal. Define ϕ̃: ∆→M(Γ)
by ϕ̃(ζ) = ζν/‖ν‖∞, and set ϕ = Φ ◦ ϕ̃. Then ϕ(0) = [µ] and τΓ

(
ϕ(0);ϕ′(0)

)
= 1. By

Proposition 1.4, then, ϕ∗τΓ is the Poincaré metric of ∆, which has Gaussian curvature
identically −4. Thus the definition implies that the holomorphic curvature of τΓ at ([µ];ψ)
is at least −4, and we are done.

It is known that Teichmüller spaces have not nonpositive real sectional curvature,
and that they are not hyperbolic in any reasonable real sense (see [MW] for instance).
Nevertheless, as it has been underlined by many, Teichmüller spaces behave very much
in a hyperbolic manner. We feel that the reason is purely a complex geometrical one, as
illustrated by Proposition 3.1.

We are now able to complete Royden’s program at the infinitesimal level:

Corollary 3.2: Let Γ be a Fuchsian group, and ϕ: ∆→ T (Γ) a holomorphic map. Then
the following statements are equivalent:

(i) ϕ is infinitesimally extremal at one point with respect to the Teichmüller metric
of T (Γ);
(ii) ϕ is an infinitesimal complex geodesic with respect to the Teichmüller metric of T (Γ).

Proof : It follows from Propositions 1.4 and 3.1.

So it is clear that the hard part in Royden’s program lies in passing from the metric
to the distance; this has been accomplished in [EKK] where it is proved the analogous
of Theorem 2.2 for T (Γ) by means of the following lifting lemma: for any holomorphic
map ϕ: ∆→ T (Γ) there exists a holomorphic map ϕ̃: ∆→M(Γ) such that ϕ = Φ ◦ ϕ̃.

We end this section by discussing existence and uniqueness of (infinitesimal) complex
geodesics:

Proposition 3.3: Let Γ be a Fuchsian group. Then:

(i) for any point [µ] ∈ T (Γ) and tangent vector ψ ∈ B(Γ) there exists an infinitesimal
complex geodesic ϕ: ∆→ T (Γ) such that ϕ(0) = [µ] and ϕ′(0) is a non-zero multiple of ψ.
Furthermore, if T (Γ) is finite dimensional then ϕ is uniquely determined.
(ii) for any couple of distinct points [µ1], [µ2] ∈ T (Γ) there exists a complex geodesic
ϕ: ∆→ T (Γ) such that ϕ(0) = [µ1] and ϕ(r) = [µ2] for some r > 0. Furthermore, if T (Γ)
is finite dimensional then ϕ is uniquely determined.

Proof : Using right translations, up to replacing Γ by an isomorphic Fuchsian group we
can assume (see [EE, Theorem 3.(c)]) that [µ] = Φ(0). Choose again ν ∈ L∞(Γ) such
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that ψ = dΦ0(ν) and τΓ([µ];ψ) = σ(0; ν), and define ϕ: ∆ → T (Γ) as in the proof of
Proposition 3.1. By construction, ϕ is infinitesimally extremal at the origin, and thus the
existence part of (i) is done, by Corollary 3.2. A similar argument yields the existence part
of (ii), using [EKK, Theorem 5] instead of Corollary 3.2. The uniqueness is well known.

We close this section underlining that on the Bers realization of a Teichmüller space
(which is not starlike with respect to any of its points) the Kobayashi-Teichmüller metric
has a geometry (e.g., good regularity, constant negative curvature, existence and unique-
ness of complex geodesics, existence of pluricomplex Green functions, . . . ) which resembles
in a striking way the geometry of invariant metrics on (strictly) convex domains, where the
Kobayashi and Carathéodory metrics agree. It is also known ([Kr]) that Kobayashi and
Carathéodory metrics agree on many directions, and we recall that Theorem 2.1 holds.
Even though the Carathéodory metric need not to be preserved under projections, in light
of all this it is very surprising that it seems that in general the Kobayashi-Teichmüller
metric does not agree with Carathéodory metric (see [Kru] and references therein). This
aspect should be better understood and deserves further investigation.

4. Isometries and biholomorphic maps into Teichmüller spaces
In this paragraph we would like to show how typical arguments involving intrinsic metrics
may be useful in Teichmüller theory. Following ideas of [P], [Vi1, 2] and in particular [Gr]
we can show the following result (that is, Theorem 0.1) in the vein of Royden’s character-
ization of automorphisms of Teichmüller spaces as isometries of the Teichmüller metric.

Theorem 4.1: Let Γ be a Fuchsian group so that T (Γ) is finite dimensional, and let N be a
taut connected complex manifold. Then a holomorphic map F :N → T (Γ) is biholomorphic
if and only if it is an isometry for the Kobayashi metric at one point.

Proof : If F :N → T (Γ) is biholomorphic then it is an isometry for the Kobayashi metric,
and hence the claim in one direction is trivial.

Conversely, suppose that F :N → T (Γ) is a holomorphic map which is isometric at
the point p ∈ N , i.e., such that

κN (p; v) = κT (Γ)

(
F (p); dFp(v)

)
= τΓ

(
F (p); dFp(v)

)
for every v ∈ T 1,0

p N , where κN is the Kobayashi metric of N and κT (Γ) is the Kobayashi
metric of T (Γ).

Let J(p) be the set of holomorphic maps ϕ: ∆→ N with ϕ(0) = p and infinitesimally
extremal at the origin with respect to κN ; being N taut, for every v ∈ T 1,0

p N there is at
least one ϕ ∈ J(p) such that ϕ′(0) is a positive multiple of v. Take ϕ ∈ J(p). The fact
that F is an isometry at p implies that F ◦ ϕ is still infinitesimally extremal at the origin
with respect to κT (Γ); hence, by [EKK, Theorem 5], F ◦ ϕ is a complex geodesic in T (Γ).
But then recalling the decreasing property of the Kobayashi distance we get

ω(ζ1, ζ2) ≥ kN
(
ϕ(ζ1), ϕ(ζ2)

)
≥ kT (Γ)

(
(F ◦ ϕ)(ζ1), (F ◦ ϕ)(ζ2)

)
= ω(ζ1, ζ2), (4.1)

for every ζ1, ζ2 ∈ ∆, where ω is the Poincaré distance of ∆ and kT (Γ) is the Teichmüller
(Kobayashi) distance of T (Γ); therefore every ϕ ∈ J(p) is a complex geodesic with respect
to the Kobayashi distance of N .
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Now, as remarked in [Gr, Proposition 2], it is easy to show that the set

N0 =
⋃{

φ(∆)
∣∣ φ ∈ J(p)

}
is closed. On the other hand observe that by Proposition 3.3 the images of the complex
geodesic of T (Γ) through [µ] = F (p) fill all T (Γ), and the images of two complex geodesics
meeting at [µ] either coincide or meet only at [µ]. We noticed that F sends complex
geodesics through p in complex geodesics through F (p); since complex geodesics are proper
maps biholomorphic onto their image ([V]), it follows that F |N0 :N0 → T (Γ) is bijective. If
we can show that N0 is also open it will follow that N0 = N and that F is biholomorphic.
For this aim it suffices to show that f = F |N0 is a homeomorphism of N0, with the induced
topology, onto T (Γ). To this end we need only to check the continuity of f−1. Let {[νj ]}
be a sequence of points in T (Γ) with

lim
j→∞

[νj ] = [ν0].

For all j let pj = f−1([νj ]) ∈ N0; we must show that pj → p0. Take ϕj ∈ J(p) such that
ϕj(rj) = pj for some 0 ≤ rj < 1. Now (4.1) implies that

kT (Γ)([µ], [νj ]) = ω(0, rj) = kN (p, pj). (4.2)

Since the topology induced by the Teichmüller distance on T (Γ) is equivalent to the man-
ifold topology, the sequence {rj} is bounded away from 1.

To prove that pj → p0 it suffices to show that every subsequence of {pj} admits a
subsequence converging to p0. So fix a subsequence of {pj}, which we shall still denote
by {pj}. From what we have seen we get a subsequence {rjk} converging to some r0 < 1.
On the other hand, because of the tautness of N , there exists a subsequence of {ϕjk}, which
we denote again by {ϕjk}, converging uniformly on compact subsets of ∆ to a holomorphic
map ϕ0: ∆ → N such that ϕ0(0) = p. Then {pjk} = {ϕjk(rjk)} converges to some point
ϕ0(r0) ∈ N . But, by construction ϕ0 belongs to J(p); therefore

f
(
ϕ0(r0)

)
= lim
k→∞

f
(
ϕjk(rjk)

)
= lim
k→∞

f(pjk) = lim
k→∞

[νjk ] = [ν0].

It follows that ϕ0(r0) = f−1([ν0]) = p0, and so pjk → p0, as needed.

So Royden’s theorem about biholomorphic isometries of finite dimensional Teichmüller
spaces is just a particular case of this result, because we have already remarked that every
finite dimensional Teichmüller space is taut (see [A] for properties and examples of taut
manifolds).

For infinite dimensional Teichmüller spaces the previous proof fails because the unique-
ness of complex geodesics through pair of points does not hold. A different approach sug-
gests a way to circumvent this problem: if N is a Teichmüller space, then it is already
known that N0 = N . Furthermore exactly as before one shows that F preserves the dis-
tance from the base point p, that is (4.2). If N is finite dimensional, it is then easy to
prove that F is proper (essentially because closed Kobayashi balls are compact, which
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follows from Teichmüller spaces being complete hyperbolic). Standard theorems about
proper holomorphic maps between equidimensional complex manifolds then imply that F
is surjective, and that the cardinality of almost every fiber is constant (and finite), and
the exceptional fibers have fewer elements. But (4.2) implies that this cardinality should
be one, and so F is a biholomorphism.

In the infinite dimensional case this argument breaks down because (4.2) does not
imply anymore that F is proper; moreover, one should be careful in talking about “equidi-
mensionality”. Nevertheless, a result due to Shoiykhet ([S]) suggests that further investi-
gations in this direction may be fruitful. We need some preliminaries. Let F :M → N be
a holomorphic map between complex Banach manifolds. We say that x ∈ M is a regular
point if the differential of F at x is surjective; otherwise we say that x is a singular point.
We denote the set of singular points by SF . Also we say that F is a Fredholm map of
index 0 if for all x ∈M

dim Ker dFx = dim Coker dFx <∞; (4.3)

notice that this equality is a way of saying that M and N are equidimensional. Shoiykhet’s
result is summarized in the following

Proposition 4.2: Let F :M → N be a holomorphic map between complex Banach man-
ifolds such that F is a Fredholm map of index 0 with discrete fibers. Then

(i) the singular set SF is an analytic set and in fact it is the zero set of some holomorphic
function on M ;
(ii) the image F (M) of F is an open subset of N ;
(iii) there is an integer m ≥ 1, the multiplicity of F , such that for every y ∈ F (M)\F (SF )
the fiber F−1(y) has exactly m elements and for any y ∈ F (SF ) the fiber F−1(y) has
strictly less than m elements.

Proof : Because of [S, Theorem 1], given any x ∈ M there exists a neighborhood Ux such
that the restriction F |Ux satisfies the claim of the proposition. It is straightforward to
globalize the result.

A proper map between complex manifolds has discrete fibers and closed image. So
the following result (Theorem 0.2) is a generalization of Royden’s theorem to the infinite
dimensional case:

Theorem 4.3: Let T (Γ1) and T (Γ2) be Teichmüller spaces (possibly infinite dimensional)
relative to Fuchsian groups Γ1 and Γ2. Then a holomorphic map F :T (Γ1) → T (Γ2) is
biholomorphic if and only if it is a Fredholm map of index 0 with discrete fibers and closed
image which is an isometry for the Kobayashi-Teichmüller metric at one point.

Proof : Clearly if F is biholomorphic then it is a bijective isometry at every point. Fur-
thermore in the finite dimensional case the result is a corollary of Theorem 4.1. Let us
then assume that F is a Fredholm map of index 0 with discrete fibers and closed image
which is an isometry at some point [µ0] ∈ T (Γ1). In particular, by Proposition 4.2.(ii), F
is surjective.

Now notice that for any point [µ] ∈ T (Γ1) there is a complex geodesic ϕ: ∆→ T (Γ1)
such that φ(0) = [µ0] and φ(r) = [µ] for some 0 ≤ r < 1. Then, as F is an infinitesimal
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isometry at [µ0], the composition F ◦ϕ is infinitesimally extremal at the origin, and hence
a complex geodesic through [ν0] = F ([µ0]). This implies that

kT (Γ2)

(
[ν0], F ([µ])

)
= kT (Γ1)([µ0], [µ])

for all [µ] ∈ T (Γ1); in particular, F has multiplicity 1 in an open neighborhood of [µ0]. This
is enough to conclude that F is biholomorphic. In fact, using (i) and (iii) of Proposition 4.2,
it follows that F has multiplicity m = 1 on all T (Γ1) and SF = /©, so that the inverse
of F , by the implicit function theorem, is holomorphic.

It would be interesting to know whether the hypotheses (closed image, discrete fibers,
and so on) in this theorem hold (as they do in the finite dimensional case) for any holo-
morphic map between infinite dimensional Teichmüller spaces which is an isometry at one
point.
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