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ABSTRACT. We shall describe an alternative approach to a general renormalization
procedure for formal self-maps, originally suggested by Chen-Della Dora and Wang-Zheng-
Peng, giving formal normal forms simpler than the classical Poincaré-Dulac normal form. As
example of application we shall compute a complete list of normal forms for bi-dimensional

superattracting germs with non-vanishing quadratic term; in most cases, our normal forms
will be the simplest possible ones (in the sense of Wang-Zheng-Peng). We shall also discuss
a few examples of renormalization of germs tangent to the identity, revealing interesting

second-order resonance phenomena.

1. Introduction. In the study of a class of holomorphic dynamical systems, an
important goal often is the classification under topological, holomorphic or formal
conjugation. In particular, for each dynamical system in the class one would like to
have a definite way of choosing a (hopefully simpler, possibly unique) representative
in the same conjugacy class; a normal form of the original dynamical system.

The formal classification of one-dimensional germs is well-known (see, e.g., [2]):
if

f(z) = λz + aµz
µ +Oµ+1 ∈ C[[z]]

is a one-dimensional formal power series with complex cofficients and vanishing
constant term, where aµ ̸= 0 and Oµ+1 is a remainder term of order at least µ+ 1,
then f is formally conjugated to:

– g(z) = λz if λ ̸= 0 and λ is not a root of unity;
– g(z) = zµ if λ = 0; and to
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– g(z) = λz−zkq+1+αz2kq+1 if λ is a primitive q-th root of unity, for suitable k ≥ 1
and α ∈ C that are formal invariants (and where q = 1 and k = µ − 1 when
λ = 1).

In several variables, the most famous kind of normal form for local holomorphic
dynamical systems (i.e., germs of holomorphic vector fields at a singular point, or
germs of holomorphic self-maps with a fixed point) is the Poincaré-Dulac normal
form with respect to formal conjugation. Let us recall very quickly its definition, at
least in the setting we are interested here, that is of formal self-maps with a fixed
point that we can assume to be the origin in Cn.

Let F ∈ Ôn be a formal transformation in n complex variables, where Ôn denotes
the space of n-tuples of power series in n variables with vanishing constant term, and
let Λ denote the (not necessarily invertible) linear term of F ; up to a linear change
of variables, we can assume that Λ is in Jordan normal form. For simplicity, given

a linear map Λ ∈Mn,n(C) we shall denote by Ôn
Λ the set of formal transformations

in Ôn with Λ as linear part. If λ1, . . . , λn are the eigenvalues of Λ, we shall say
that a multi-index Q = (q1, . . . , qn) ∈ Nn with q1 + · · · + qn ≥ 2 is Λ-resonant if
there is j ∈ {1, . . . , n} such that λq11 · · ·λqnn = λj . If this happens, we shall say that
the monomial zq11 · · · zqnn ej is Λ-resonant, where {e1, . . . , en} is the canonical basis

of Cn. Then (see, e.g., [7, 33, 34, 35]) given F ∈ Ôn
Λ it is possible to find a (not

unique, in general) invertible formal transformation Φ ∈ Ôn
I with identity linear

part such that G = Φ−1 ◦ F ◦ Φ contains only Λ-resonant monomials.

The formal transformation G is a Poincaré-Dulac normal form of F ; notice that,

since Φ ∈ Ôn
I , the linear part of G is still Λ. More generally, we shall say that a

G ∈ Ôn
Λ is in Poincaré-Dulac normal form if G contains only Λ-resonant monomials.

The importance of this result cannot be underestimated, and it has been applied
uncountably many times; however it has some limitations. For instance, if Λ = O

or Λ = I then all monomials are resonant; and thus in these cases any F ∈ Ôn
Λ is

in Poincaré-Dulac normal form, and a further simplification (a renormalization) is
necessary. Actually, even when a Poincaré-Dulac normal form is different from the
original germ, it is often possible to further simplify the germ by applying invertible
transformations preserving the property of being in Poincaré-Dulac normal form.

The idea of renormalizing Poincaré-Dulac normal forms is by now well-established
in the context of vector fields, where the renormalized normal forms are often called
hypernormal forms, and can be obtained by using several different techniques; a
(far from exhaustive) list of relevant papers one might consult is [5, 6, 8, 9, 10, 11,
14, 15, 16, 23, 24, 25, 26, 27, 28, 29, 31, 32, 36]; see also [30] for a fine introduction
to the subject. On the other hand, with a few exceptions (see, for instance, [12,
18, 19]) this idea has been exploited in the context of self-maps only recently. One
example is [3], where it is applied to a particular class of self-maps with identity
linear part. Another, more recent, example can be found in [13], where it is applied
to self-maps with invertible linear part whose resonances with respect to some of the
eigenvalues are generated over N by one multi-index. More important for our aims
are [37, 38], where the authors, inspired by [27, 18, 19, 39], construct an a priori
infinite sequence of renormalizations giving simpler and simpler normal forms.

Let us roughly describe the main ideas underlying the theory of renormalization
of formal transformations. For each ν ≥ 2 let Hν denote the space of n-tuples of

homogeneous polynomials in n variables of degree ν. Then every F ∈ Ôn
Λ admits a
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homogeneous expansion

F = Λ+
∑
ν≥2

Fν ,

where Fν ∈ Hν is the ν-homogeneous term of F . We shall also use the notation
{G}ν to indicate the ν-homogeneous term of a formal transformation G, and denote

by LΛ: Ôn → Ôn the map

LΛ(H) = H ◦ Λ− ΛH .

If Φ = I +
∑

ν≥2Hν ∈ Ôn
I is the homogeneous expansion of an invertible formal

transformation then it turns out that LΛ(Hν) ⊆ Hν and

{Φ−1 ◦ F ◦ Φ}ν = Fν − LΛ(Hν) +Rν (1.1)

for all ν ≥ 2, where Rν is a remainder term depending only on Fρ and Hσ with
ρ, σ < ν. This suggests to consider for each ν ≥ 2 splittings of the form

Hν = ImLν
Λ ⊕N ν and Hν = KerLν

Λ ⊕Mν ,

where Lν
Λ = LΛ|Hν , and N ν and Mν are suitable complementary subspaces. Then

(1.1) implies that we can inductively choose Hν ∈ Mν so that {Φ−1 ◦F ◦Φ}ν ∈ N ν

for all ν ≥ 2; we shall say that G = Φ−1◦F ◦Φ is a first order normal form of F (with
respect to the chosen complementary subspaces). Furthermore, it is not difficult to
see that the quadratic (actually, the first non-linear non-vanishing) homogeneous
term of G is a formal invariant, that is it is the same for all first order normal forms
of F . Notice that when Λ = O or Λ = I we have LΛ ≡ O, and thus in these cases

every F ∈ Ôn
Λ is a first order normal form.

When Λ is diagonal, KerLΛ is generated by the resonant monomials, and ImLΛ

is generated by the non-resonant monomials. Furthermore, for each ν ≥ 2 we have
the splitting Hν = ImLν

Λ⊕KerLν
Λ, and thus taking N ν = KerLν

Λ and Mν = ImLν
Λ

we have recovered the classical Poincaré-Dulac normal form (when Λ has a nilpotent
part the situation is only slightly more complicated; see [30, Section 4.5] for details).

Summing up, a Poincaré-Dulac formal normal form is composed by homogeneous
terms contained in a complementary space of the image of the operator LΛ. Fur-
thermore, the quadratic homogeneous term is uniquely determined, and we can still
act on the normal form by transformations having all homogeneous terms in the
kernel of LΛ.

The k-th renormalization follows the same pattern. Assume that F is in (k−1)-th
normal form. Then there is a suitable (not necessarily linear if k ≥ 3) operator Lk,
depending on the first k homogeneous terms of F , so that we can bring F in a
normal form G whose all homogeneous terms belong to a chosen complementary
subspace1 of the image of Lk, and the first k + 1 homogeneous terms of G are
uniquely determined; we shall say that G is in k-th order normal form (with respect
to the chosen subspaces).

A formal transformation G is in infinite order normal form if it is in k-th normal
form for all k, with respect to some choice of complementary subspaces and using

1When k ≥ 3 one has to choose a complementary subspace to a vector space of maximal dimen-
sion contained in the image of Lk. Actually, [38] talks of “the” subspace of maximal dimension

contained in Lk, but a priori it might not be unique.
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the operators Lk defined using the first k homogeneous terms of G. The main

result of [38] then states that every element of Ôn
Λ can be brought to a (possibly not

unique) infinite order normal form by a sequence of formal conjugations tangent to
the identity.

In the first section of this paper we shall describe an alternative approach, equiv-
alent to the one proposed by Wang-Zheng-Peng but possibly simpler, to the de-
termination of higher order normal forms, based on homogeneous polynomials and
symmetric multilinear maps instead of on higher order derivatives. We shall concen-
trate in particular on second order normal forms because, as we shall see, in most
cases the second order normal forms we shall obtain will automatically be infinite
order normal forms.

To apply these procedures we need a rule for choosing complementary subspaces.
It turns out that an efficient way of doing this is by taking orthogonal complements
with respect to the Fischer Hermitian product, defined by (see [22])

⟨zp1

1 · · · zpn
n eh,z

q1
1 · · · zqnn ek⟩

=


0 if h ̸= k or pj ̸= qj for some j;

p1! · · · pn!
(p1 + · · ·+ pn)!

if h = k and pj = qj for all j.

With this choice, as we shall see in Sections 2 and 3, the expression of the second
order (and often infinite order) normal forms can be quite simple. For instance,
in Section 2 we shall apply this procedure to the case of superattracting (i.e., with
Λ = O) 2-dimensional formal transformations, case that has no analogue in the
vector field setting, proving the following

Theorem 1.1. Let F ∈ Ô2
O be of the form F (z, w) = F2(z, w) +O3. Then:

(i) if F2(z, w) = (z2, zw) or F2(z, w) = (−z2,−z2 − zw) then F is formally conju-
gated to a unique infinite order normal form

G(z, w) = F2(z, w) +
(
φ(w)− zψ′(w), 2ψ(w)

)
,

where φ, ψ ∈ C[[ζ]] are power series of order at least 3;
(ii) if F2(z, w) = (−zw,−z2 −w2) then F is formally conjugated to a unique infinite

order normal form

G(z, w) = F2(z, w) +
(
−2φ(z + w) + 2ψ(w − z), φ(z + w) + ψ(w − z)

)
,

where φ, ψ ∈ C[[ζ]] are power series of order at least 3;
(iii) if F2(z, w) = (zw, zw + w2) then F is formally conjugated to a unique infinite

order normal form

G(z, w) = F2(z, w) +
(
wφ′(z) + ψ(z), 2φ(z)− wφ′(z)− ψ(z)

)
,

where φ, ψ ∈ C[[ζ]] are power series of order at least 3;
(iv) if F2(z, w) =

(
−ρz2, (1 − ρ)zw

)
with ρ ̸= 0, 1 then F is formally conjugated to

a unique infinite order normal form

G(z, w) = F2(z, w) +
(
(ρ− 1)zφ′(w) + ψ(w),−2ρφ(z)

)
,
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where φ, ψ ∈ C[[ζ]] are power series of order at least 3;
(v) if F2(z, w) = (−z2 + zw,w2

)
then F is formally conjugated to a unique infinite

order normal form

G(z, w) = F2(z, w) +
(
φ( z2 + w),−1

4φ(
z
2 + w) + ψ(z)

)
,

where φ, ψ ∈ C[[ζ]] are power series of order at least 3;
(vi) if F2(z, w) =

(
ρz2 + zw, (1 + ρ)zw + w2

)
with ρ ̸= 0, −1 then F is formally

conjugated to a unique infinite order normal form

G(z, w) = F2(z, w)+

(
1

ρ

[
1−

√
−ρ

2m2
ρ

φ(mρz + w) +
1 +

√
−ρ

2n2ρ
φ(nρz + w)

]
+

1 + ρ

2
√
−ρ

(
1

m2
ρ

ψ(mρz + w)− 1

n2ρ
ψ(nρz + w)

)
,

1−
√
−ρ

2
φ(mρz + w) +

1 +
√
−ρ

2
φ(nρz + w)

+
ρ(1 + ρ)

2
√
−ρ

(
ψ(mρz + w)− ψ(nρz + w)

))
where

√
−ρ is any square root of −ρ,

mρ =

√
−ρ− ρ

ρ(1 + ρ)
, nρ = −

√
−ρ+ ρ

ρ(1 + ρ)
,

and φ, ψ ∈ C[[ζ]] are power series of order at least 3;
(vii) if F2(z, w) =

(
ρ(−z2 + zw), (1 − ρ)(zw − w2)

)
with ρ ̸= 0, 1 then F is formally

conjugated to a unique infinite order normal form

G(z, w) =F2(z, w)

+

(
z
∂

∂z

[
φ(z + w) + ψ(z + w)

]
− φ(z + w),

ρ− 1

ρ

(
z
∂

∂z

[
φ(z + w)− ψ(z + w)

]
− 3φ(z + w) + 2ψ(z + w)

))
where φ, ψ ∈ C[[ζ]] are power series of order at least 3;

(ix) if F2(z, w) = (−z2,−w2) then F is formally conjugated to a unique infinite order
normal form

G(z, w) = F2(z, w) +
(
φ(w), ψ(z)

)
where φ, ψ ∈ C[[ζ]] are power series of order at least 3;

(x) if F2(z, w) = (−ρz2, (1− ρ)zw−w2) with ρ ̸= 0, 1 then F is formally conjugated
to a unique infinite order normal form

G(z, w) = F2(z, w) +

(
φ(w) +

(1− ρ)2

4ρ
ψ

(
2

1− ρ
z + w

)
, ψ

(
2

1− ρ
z + w

))
where φ, ψ ∈ C[[ζ]] are power series of order at least 3;
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(xi) if F2(z, w) = (−ρz2 +(1− τ)zw, (1− ρ)zw− τw2) with ρ, τ ̸= 0, 1 and ρ+ τ ̸= 1
then F is formally conjugated to a unique infinite order normal form

G(z, w) = F2(z, w)+

(
τ

ρ

[√
ρ+ τ − 1 +

√
ρτ

2m2
ρ,τ

φ(mρ,τz + w)

+

√
ρ+ τ − 1−√

ρτ

2n2ρ,τ
φ(nρ,τz + w)

+
1

m2
ρ,τ

ψ(mρ,τz + w)− 1

n2ρ,τ
ψ(nρ,τz + w)

]
,

√
ρ+ τ − 1 +

√
ρτ

2
φ(mρ,τz + w)

+

√
ρ+ τ − 1−√

ρτ

2
φ(nρ,τz + w)

+ ψ(mρ,τz + w)− ψ(nρ,τz + w)

)
,

where

mρ,τ =

√
ρτ

√
ρ+ τ − 1− ρτ

ρ(ρ− 1)
, nρ,τ = −

√
ρτ

√
ρ+ τ − 1 + ρτ

ρ(ρ− 1)
.

and φ, ψ ∈ C[[ζ]] are power series of order at least 3.

Notice that the uniqueness of the infinite normal form implies that the power
series φ and ψ appearing in this statement are formal invariants of the original map,
in stark contrast with the one-dimensional case where the only formal invariant is
the degree of the first non-linear non-vanishing term. Furthermore, the possibility
of expressing the normal forms by using only two power series of one variables
(and their derivatives) comes from the use of Fischer Hermitian product, which is
particularly suited to this aim; other choices of complementary subspaces would
lead to much more involved normal forms.

In [1] we showed that the quadratic terms considered in Theorem 1.1 form an al-
most complete list of all possible quadratic terms up to linear change of coordinates;
the only missing possibilities are four degenerate cases where one of the coordinates
is identically zero. In these remaining cases we shall anyway be able to compute a
second order normal form:

Proposition 1.2.. Let F ∈ Ô2
O be of the form F (z, w) = F2(z, w) +O3. Then:

(i) if F2(z, w) = (0,−z2) then F is formally conjugated to a unique second order
normal form

G(z, w) = F2(z, w) +
(
Φ(z, w), ψ(w)

)
,

where ψ ∈ C[[ζ]] and Φ ∈ C[[z, w]] are power series of order at least 3;
(ii) if F2(z, w) = (0, zw) then F is formally conjugated to a unique second order

normal form

G(z, w) = F2(z, w) +
(
Φ(z, w), 0

)
,

where Φ ∈ C[[z, w]] is a power series of order at least 3;
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(iii) if F2(z, w) = (−z2, 0) then F is formally conjugated to a unique second order
normal form

G(z, w) = F2(z, w) +
(
ψ(w),Φ(z, w)

)
,

where ψ ∈ C[[ζ]] and Φ ∈ C[[z, w]] are power series of order at least 3;
(iv) if F2(z, w) = (z2− zw, 0) then F is formally conjugated to a unique second order

normal form
G(z, w) = F2(z, w) +

(
0,Φ(z, w)

)
,

where Φ ∈ C[[z, w]] is a power series of order at least 3.

Finally, in Section 3 we shall also discuss a few interesting examples with Λ =
I, displaying in particular the appearance of non-trivial second-order resonance
phenomena. For instance, we shall prove the following

Proposition 1.3.. Let F ∈ Ô2
I be of the form F (z, w) = (z, w) + F2(z, w) + O3,

with
F2(z, w) =

(
−ρz2, (1− ρ)zw

)
and ρ ̸= 0. Put

E =
(
[0, 1] ∩Q

)
∪
{
− 1

n

∣∣∣∣ n ∈ N∗
}

and

F =
(
[0, 1] ∩Q

)
∪
{
1 +

1

n
, 1 +

2

n

∣∣∣∣ n ∈ N∗
}
.

Then:

(i) if ρ /∈ E ∪F then F is formally conjugated to a unique second order normal form

G(z, w) = (z, w) + F2(z, w)

+
(
az3 + φ(w) + (1− ρ)zψ′(w), (1− ρ)wψ′(w) + (3ρ− 1)ψ(z)

)
,

where φ, ψ ∈ C[[ζ]] are power series of order at least 3, and a ∈ C;
(ii) if ρ = 1 + 1

n ∈ F \ E then F is formally conjugated to a unique second order
normal form

G(z, w) = (z, w) + F2(z, w)

+

(
a0z

3 + a1z
2wn+1 + φ(w)− 1

n
zψ′(w),

− 1

n
wψ′(w) +

(
2 +

3

n

)
ψ(w)

)
,

where φ, ψ ∈ C[[ζ]] are power series of order at least 3, and a0, a1 ∈ C;
(iii) if ρ = 1 + 2

m ∈ F \ E with m odd then F is formally conjugated to a unique
second order normal form

G(z, w) = (z, w) + F2(z, w)

+

(
a0z

3 + φ(w)− 2

m
z
(
wψ′(w) + ψ(w)

)
,

− 2

m
w2ψ′(w) +

(
2 +

4

m

)
wψ(w)

)
,
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where φ, ψ ∈ C[[ζ]] are power series of order at least respectively 3 and 2, and
a0 ∈ C;

(iv) if ρ = − 1
n ∈ E \F then F is formally conjugated to a unique second order normal

form

G(z, w) = (z, w) + F2(z, w)

+

(
a0z

3 + φ(w) +

(
1 +

1

n

)
z
(
wψ′(w) + ψ(w)

)
,

a1z
n+2 + ψ(z) +

(
1 +

1

n

)
w2ψ′(w)− 2

n
wψ(w)

)
,

where φ, ψ ∈ C[[ζ]] are power series of order at least respectively 3 and 2, and
a0 a1 ∈ C;

(v) if ρ = 1 ∈ E ∩ F then F is formally conjugated to a unique second order normal
form

G(z, w) = (z, w) + F2(z, w) +
(
φ1(w) + z3ψ(w), φ2(w) + zφ3(w)

)
,

where φ1, φ2 ∈ C[[ζ]] are power series of order at least 3, φ2 ∈ C[[ζ]] is a power
series of order at least 2, and φ3 ∈ C[[ζ]] is a power series;

(vi) if ρ = a/b ∈ (0, 1)∩Q ⊂ E \F then F is formally conjugated to a unique second
order normal form

G(z, w) = (z, w) + F2(z, w)

+

(
φ(w) + z3φ0(z

b−awa) + (b− a)
∂

∂w

(
z2wχ(zb−awa)

)
+
(
1− a

b

)
z
(
wψ′(w) + ψ(w)

)
,

a
∂

∂z

(
z2wχ(zb−awa)

)
+
(
1− a

b

)
w2ψ′(w) + 2

a

b
wψ(w)

)
,

where φ, ψ ∈ C[[ζ]] are power series of order at least 3, and φ0, χ ∈ C[[ζ]] are
power series of order at least 1.

In future papers we plan to study the dynamics of the normal forms we obtained,
and to discuss the convergence of the normalizing transformations.

2. Renormalization. In this section we shall present the renormalization proce-
dure for formal transformations, concentrating on the parts that will be useful for
our aims. One of the main differences between our approach and the one followed
by Wang, Zheng and Peng is that we shall systematically use the relations between
homogeneous polynomials and symmetric multilinear maps instead of relying on
higher order derivatives as in [38].

Let us start collecting a few results on homogeneous polynomials and maps we
shall need later.

Definition 2.1. We shall denote by Hd the space of homogenous maps of de-
gree d, i.e., of n-tuples of homogeneous polynomials of degree d ≥ 1 in the vari-
ables (z1, . . . , zn). It is well known (see, e.g., [17, pp. 79–88]) that to each P ∈ Hd

is associated a unique symmetric multilinear map P̃ : (Cn)d → Cn such that

P (z) = P̃ (z, . . . , z)
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for all z ∈ Cn. We also set H =
∏
d≥2

Hd.

Roughly speaking, the symmetric multilinear map associated to a homogeneous
map H encodes the derivatives of H. For instance, it is easy to check that for
each H ∈ Hd we have

(JacH)(z) · v = d H̃(v, z, . . . , z) (2.1)

for all z, v ∈ Cn.
Later on we shall need to compute the multilinear map associated to a homoge-

neous map obtained as a composition. The formula we are interested in is contained
in the next lemma.

Lemma 2.2. Assume that P ∈ Hd is of the form

P (z) = K̃
(
Hd1(z), . . . ,Hdr (z)

)
,

where K̃ is r-multilinear, d1 + · · ·+ dr = d, and Hdj ∈ Hdj for j = 1, . . . , r. Then

P̃ (v, w, . . . , w) =
1

d

r∑
j=1

djK̃
(
Hd1(w), . . . , H̃dj (v, w, . . . , w), . . . ,Hdr (w)

)
for all v, w ∈ Cn.

Proof. Write z = w + εv. Then

P (w) + dεP̃ (v, w, . . . , w) +O(ε2)

= P (w + εv)

= K̃
(
H̃d1(w + εv, . . . , w + εv), . . . , H̃dr (w + εv, . . . , w + εv)

)
= K̃

(
Hd1(w), . . . , Hdr (w)

)
+ ε

r∑
j=1

djK̃
(
Hd1(w), . . . , H̃dj (v, w, . . . , w), . . . ,Hdr (w)

)
+O(ε2) ,

and we are done. �
Definition 2.3. Given a linear map Λ ∈ Mn,n(C), we define a linear operator
LΛ:H → H by setting

LΛ(H) = H ◦ Λ− ΛH .

We shall say that a homogeneous map H ∈ Hd is Λ-resonant if LΛ(H) = O, and we
shall denote by Hd

Λ = KerLΛ ∩Hd the subspace of Λ-resonant homogeneous maps
of degree d. Finally, we set HΛ =

∏
d≥2

Hd
Λ.

When Λ is diagonal, then the Λ-resonant monomials are exactly the resonant
monomials appearing in the classical Poincaré-Dulac theory.

Definition 2.4. If Q = (q1, . . . , qn) ∈ Nn is a multi-index and z = (z1, . . . , zn) ∈
Cn, we shall put zQ = zq11 · · · zqnn . Given Λ = diag(λ1, . . . , λn) ∈Mn,n(C), we shall
say that Q ∈ Nn with q1 + · · · + qn ≥ 2 is Λ-resonant on the j-th coordinate if
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λq11 · · ·λqnn = λj . If Q is Λ-resonant on the j-th coordinate, we shall also say that
the monomial zQej is Λ-resonant, where {e1, . . . , en} is the canonical basis of Cn.

Remark 1. If Λ = diag(λ1, . . . , λn) ∈ Mn,n(C) is diagonal, and zQej ∈ Hd is a
homogeneous monomial (with q1 + · · · + qn = d), then (identifying the matrix Λ
with the vector, still denoted by Λ, of its diagonal entries) we have

LΛ(z
Qej) = (ΛQ − λj)z

Qej .

Therefore zQej is Λ-resonant if and only if Q is Λ-resonant in the j-th coordinate.
In particular, a basis of Hd

Λ is given by the Λ-resonant monomials, and we have

Hd = Hd
Λ ⊕ ImLΛ|Hd

for all d ≥ 2.

It is possible to detect the Λ-resonance by using the associated multilinear map:

Lemma 2.5. If Λ ∈Mn,n(C) and H ∈ Hd then H is Λ-resonant if and only if

H̃(Λv1, . . . ,Λvd) = ΛH̃(v1, . . . , vd) (2.2)

for all v1, . . . , vd ∈ Cn. In particular, if H ∈ Hd
Λ then(

(JacH) ◦ Λ
)
· Λ = Λ · (JacH) . (2.3)

Proof. One direction is trivial. Conversely, assume H ∈ Hd
Λ. By definition, H is

Λ-resonant if and only if H̃(Λw, . . . ,Λw) = ΛH̃(w, . . . , w) for all w ∈ Cn. Put
w = z + εv1; then

H̃(Λz, . . . ,Λz) + εd H̃(Λv1,Λz, . . . ,Λz) +O(ε2)

= H̃
(
Λ(z + εv1), . . . ,Λ(z + εv1)

)
= ΛH̃(z + εv1, . . . , z + εv1)

= ΛH̃(z, . . . , z) + εdΛH̃(v1, z, . . . , z) +O(ε2) ,

and thus
H̃(Λv1,Λz, . . . ,Λz) = ΛH̃(v1, z, . . . , z) ; (2.4)

in particular (2.3) is a consequence of (2.1).
Now put z = z1 + εv2 in (2.4). We get

H̃(Λv1,Λz1, . . . ,Λz1) + ε(d− 1)H̃(Λv1,Λv2,Λz1, . . . ,Λz1) +O(ε2)

= H̃
(
Λv1,Λ(z1 + εv2), . . . ,Λ(z1 + εv2)

)
= ΛH̃(v1, z1 + εv2, . . . , z1 + εv2)

= ΛH̃(v1, z1, . . . , z1)

+ ε(d− 1)ΛH̃(v1, v2, z, . . . , z) +O(ε2) ,
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and hence
H̃(Λv1,Λv2,Λz1, . . . ,Λz1) = ΛH̃(v1, v2, z1, . . . , z1)

for all v1, v2, z1 ∈ Cn. Proceeding in this way we get (2.2). �
We now introduce the operator needed for the second order normalization.

Definition 2.6. Given P ∈ Hµ and Λ ∈ Mn,n(C), let LP,Λ:Hd → Hd+µ−1 be
given by

LP,Λ(H)(z) = d H̃
(
P (z),Λz, . . . ,Λz

)
− µP̃

(
H(z), z, . . . , z

)
.

Remark 2. Equation (2.1) implies that

d H̃
(
P (z),Λz, . . . ,Λz

)
= (JacH)(Λz) · P (z) .

Therefore
LP,Λ(H) =

(
(JacH) ◦ Λ

)
· P − (JacP ) ·H ;

In the notations of [38] we have LP,Λ(H) = [H,P ), and LP,Λ|Hd
Λ

= Td[P ] when
P ∈ Hµ

Λ.

Using multilinear maps it is easy to prove the following useful fact:

Lemma 2.7. Take Λ ∈ Mn,n(C) and P ∈ Hµ
Λ. Then LP,Λ(Hd

Λ) ⊆ Hd+µ−1
Λ for

all d ≥ 2.

Proof. Using Lemma 2.5 and the definition of LP,Λ, if H ∈ Hd
Λ we get

LP,Λ(H)(Λz) = d H̃
(
P (Λz),Λ2z, . . . ,Λ2z

)
− µP̃

(
H(Λz),Λz, . . . ,Λz

)
= d H̃

(
ΛP (z),Λ2z, . . . ,Λ2z

)
− µP̃

(
ΛH(z),Λz, . . . ,Λz

)
= dΛH̃

(
P (z),Λz, . . . ,Λz

)
− µΛP̃

(
H(z), z, . . . , z

)
= ΛLP,Λ(H)(z) .

�
To state and prove the main technical result of this section we fix a few more

notations.

Definition 2.8. We shall denote by Ôn =
∏
d≥1

Hd the space of n-tuples of formal

power series with vanishing constant term. Furthermore, given Λ ∈ Mn,n(C) we

shall denote by Ôn
Λ the subset of F ∈ Ôn with dFO = Λ. Every F ∈ Ôn can be

written in a unique way as a formal sum

F =
∑
d≥1

Fd (2.5)

with Fd ∈ Hd; formula (2.5) is the homogeneous expansion of F , and Fd is the d-

homogeneous term of F . We shall often write {F}d for Fd. In particular, if F ∈ Ôn
Λ

then {F}1 = Λ.
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The homogeneous terms behave in a predictable way with respect to composition
and inverse: indeed it is easy to see that if F =

∑
d≥1

Fd and G =
∑
d≥1

Gd are two

elements of Ôn then

{F ◦G}d =
∑

1≤r≤d
d1+···+dr=d

F̃r(Gd1 , . . . , Gdr ) (2.6)

for all d ≥ 1; and that if Φ = I +
∑
d≥2

Hd belongs to Ôn
I then the homogeneous

expansion of the inverse transformation Φ−1 = I +
∑
d≥2

Kd is given by

Kd = −Hd −
∑

2≤r≤d−1
d1+···+dr=d

K̃r(Hd1 , . . . , Hdr ) (2.7)

for all d ≥ 2. In particular we have

Lemma 2.9. Take Φ = I+
∑
d≥2

Hd ∈ Ôn
I , and let Φ−1 = I+

∑
d≥2

Kd be the homoge-

neous expansion of the inverse. Then if H2, . . . ,Hd are Λ-resonant for some d ≥ 2
and Λ ∈Mn,n(C) then Kd also is Λ-resonant.

Proof. We argue by induction. Assume that H2, . . . ,Hd are Λ-resonant. If d = 2
then K2 = −H2 and thus K2 is clearly Λ-resonant. Assume the assertion true
for d− 1; in particular, K2, . . . ,Kd−1 are Λ-resonant. Then

Kd ◦ Λ = −Hd ◦ Λ−
∑

2≤r≤d−1
d1+···+dr=d

K̃r(Hd1 ◦ Λ, . . . , Hdr ◦ Λ)

= ΛHd −
∑

2≤r≤d−1
d1+···+dr=d

K̃r(ΛHd1 , . . . ,ΛHdr ) = ΛKd

because K2, . . . ,Kd−1 are Λ-resonant (and we are using Lemma 2.5). �

Definition 2.10. Given Λ ∈ Mn,n(C), we shall say that F ∈ Ôn is Λ-resonant if
F ◦ Λ = ΛF . Clearly, F is Λ-resonant if and only if {F}d ∈ Hd

Λ for all d ∈ N.

The main technical result of this section is the following:

Theorem 2.11. Given F ∈ Ôn
Λ, let F = Λ+

∑
d≥µ

Fd be its homogeneous expansion,

with Fµ ̸= O. Then for every Φ ∈ Ôn
I with homogeneous expansion Φ = I +

∑
d≥2

Hd

and every ν ≥ 2 we have

{Φ−1 ◦ F ◦ Φ}ν = Fν − LΛ(Hν)− LFµ,Λ(Hν−µ+1) +Qν +Rν , (2.8)

where Qν depends only on Λ and on Hγ with γ < ν, while Rν depends only on Fρ

with ρ < ν and on Hγ with γ < ν−µ+1, and we put LFµ,Λ(H1) = O. Furthermore,
we have:

(i) if H2, . . . , Hν−1 ∈ HΛ then Qν = O; in particular, if Φ is Λ-resonant then
LΛ(Hν) = Qν = O for all ν ≥ 2;
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(ii) if Φ is Λ-resonant then {Φ−1 ◦F ◦Φ}ν = O for 2 ≤ ν < µ, {Φ−1 ◦F ◦Φ}µ = Fµ,
and

{Φ−1 ◦ F ◦ Φ}µ+1 = Fµ+1 − LFµ,Λ(H2) ;

(iii) if F = Λ then Rν = O for all ν ≥ 2;
(iv) if F2, . . . , Fν−1 and H2, . . . ,Hν−µ are Λ-resonant then Rν is Λ-resonant.

Proof. Using twice (2.6) we get

{Φ−1 ◦ F ◦ Φ}ν
=

∑
1≤s≤ν

ν1+···+νs=ν

K̃s({F ◦ Φ}ν1 , . . . , {F ◦ Φ}νs)

=
∑

1≤s≤ν
ν1+···+νs=ν

∑
1≤j≤s

1≤rj≤νj
dj1+···+djrj

=νj

K̃s

(
F̃r1(Hd11 , . . . ,Hd1r1

), . . . , F̃rs(Hds1 ,. . . ,Hdsrs
)
)

= Tν + S1(ν) +
∑
s≥2

Ss(ν) ,

where Φ−1 = I +
∑
d≥2

Kd is the homogeneous expansion of Φ−1, and:

Tν =
∑

1≤s≤ν
ν1+···+νs=ν

K̃s(ΛHν1 , . . . ,ΛHνs)

is obtained considering only the terms with r1 = · · · = rs = 1;

S1(ν) =
∑

µ≤r≤ν
d1+···+dr=ν

F̃r(Hd1 , . . . , Hdr )

contains the terms with s = 1 and r1 > 1; and

Ss(ν)

=
∑

ν1+···+νs=ν

∑
1≤j≤s

1≤rj≤νj

max{r1,... ,rs}≥µ

∑
1≤j≤s

dj1+···+djrj
=νj

K̃s

(
F̃r1(Hd11 , . . . , Hd1r1

), . . . , F̃rs(Hds1 , . . . , Hdsrs
)
)

contains the terms with fixed s ≥ 2 and at least one rj greater than 1 (and thus
greater than or equal to µ, because F2 = . . . = Fµ−1 = O by assumption).

Let us first study Tν . The summand corresponding to s = 1 is ΛHν ; the summand
corresponding to s = ν is Kν ◦ Λ; therefore

Tν = ΛHν +Kν ◦ Λ +
∑

2≤s≤ν−1
ν1+···+νs=ν

K̃s(ΛHν1 , . . . ,ΛHνs) = −LΛ(Hν) +Qν ,

where, using (2.7) to express Kν ,

Qν =
∑

2≤s≤ν−1
ν1+···+νs=ν

[
K̃s(ΛHν1 , . . . ,ΛHνs)− K̃s(Hν1 ◦ Λ, . . .Hνs ◦ Λ)

]
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depends only on Λ and Hγ with γ < ν because 2 ≤ s ≤ ν − 1 in the sum. In
particular, if H1, . . . , Hν−1 ∈ HΛ then Qν = O, and (i) is proved.

Now let us study S1(ν). First of all, we clearly have S1(ν) = O for 2 ≤ ν < µ,
and S1(µ) = Fµ. When ν > µ we can write

S1(ν) = Fν +
∑

µ≤r≤ν−1
d1+···+dr=ν

F̃r(Hd1 , . . . , Hdr )

= Fν + µF̃µ(Hν−µ+1, I, . . . , I)

+
∑

d1+···+dµ=ν

1<max{dj}<ν−µ+1

F̃µ(Hd1 , . . . , Hdµ) +
∑

µ+1≤r≤ν−1
d1+···+dr=ν

F̃r(Hd1 , . . . ,Hdr ) .

in particular, S1(µ+1) = Fµ+1+µF̃µ(H2, I, . . . , I). Notice that the two remaining
sums depend only on Fρ with ρ < ν and on Hγ with γ < ν − µ + 1 (in the first
sum is clear; for the second one, if dj ≥ ν − µ + 1 for some j we then would have
d1 + · · ·+ dr ≥ ν − µ+ 1 + r − 1 ≥ ν + 1, impossible). Summing up we have

S1(ν) =


O for 2 ≤ ν < µ,

Fµ for ν = µ,

Fµ+1 + µF̃µ(H2, I, . . . , I) for ν = µ+ 1,

Fν + µF̃µ(Hν−µ+1, I, . . . , I) +R1
ν for ν > µ+ 1,

where

R1
ν =

∑
d1+···+dµ=ν

1<max{dj}<ν−µ+1

F̃µ(Hd1 , . . . , Hdµ) +
∑

µ+1≤r≤ν−1
d1+···+dr=ν

F̃r(Hd1 , . . . , Hdr )

depends only on Fρ with ρ < ν and on Hγ with γ < ν − µ+ 1.
Let us now discuss Ss(ν) for s ≥ 2. First of all, the condition max{r1, . . . , rs} ≥ µ

implies
µ+ s− 1 ≤ r1 + · · ·+ rs ≤ ν1 + · · ·+ νs = ν ,

that is s ≤ ν−µ+1. In particular, Ss(ν) = O if ν ≤ µ or if s > ν−µ+1. Moreover,
if we had dij ≥ ν − µ+ 1 for some 1 ≤ i ≤ s and 1 ≤ j ≤ rs we would get

ν = d11+· · ·+dsrs ≥ ν−µ+1+r1+· · ·+rs−1 ≥ ν−µ+1+µ+s−1−1 = ν+s−1 > ν ,

impossible. This means that Ss(ν) depends only on Fρ with ρ < ν for all s, on Hγ

with γ < ν−µ+1 when s < ν−µ+1, and that Sν−µ+1(ν) depends on Hν−µ+1 just

because it contains K̃ν−µ+1. Furthermore, the conditions max{r1, . . . , rν−µ+1} ≥ µ
and ν1 + . . .+ νν−µ+1 = ν imply that

Sν−µ+1(ν) = (ν − µ+ 1)K̃ν−µ+1(Fµ,Λ, . . . ,Λ)

= −(ν − µ+ 1)H̃ν−µ+1(Fµ,Λ, . . . ,Λ) +R2
ν ,

where (using (2.7) and Lemma 2.2)

R2
ν =

∑
2≤r≤ν−µ

d1+···+dr=ν−µ+1

r∑
j=1

djK̃r

(
Hd1 ◦ Λ, . . . , H̃dj (Fµ,Λ, . . . ,Λ), . . . , Hdr ◦ Λ

)



FORMAL POINCARÉ-DULAC RENORMALIZATION 1787

depends only on Λ, Fµ and Hγ with γ < ν − µ+ 1.
Putting everything together, we have

{Φ−1 ◦ F ◦ Φ}ν = Tν + S1(ν) +

ν−µ+1∑
s=2

Ss(ν)

= Fν − LΛ(Hν) +Qν +


O if 2 ≤ ν ≤ µ,

−LFµ,Λ(H2) if ν = µ+ 1,

−LFµ,Λ(Hν−µ+1) +Rν if ν > µ+ 1,

where

Rν = R1
ν +R2

ν +

ν−µ∑
s=2

Ss(ν)

depends only on Fρ with ρ < µ and on Hγ with γ < ν − µ + 1. In particular, if
F = Λ then we have Ss(ν) = O for all s ≥ 1 and hence Rν = O for all ν ≥ 2.

In this way we have proved (2.8) and parts (i), (ii) and (iii). Concerning (iv),
it suffices to notice that if F2, . . . , Fν−1 and H2, . . . , Hν−µ+1 are Λ-resonant, then
also R1

ν , S2(ν), . . . , Sν−µ(ν) and R
2
ν (by Lemmas 2.5 and 2.9) are Λ-resonant. �

Remark 3. In [38, Theorem 2.4] the remainder term Rν is expressed by using com-
binations of higher order derivatives instead of combinations of multilinear maps.

We can now introduce the second order normal forms, using the Fischer Hermit-
ian product to provide suitable complementary spaces.

Definition 2.12. The Fischer Hermitian product on H is defined by

⟨zp1

1 · · · zpn
n eh, z

q1
1 · · · zqnn ek⟩ =


0 if h ̸= k or pj ̸= qj for some j;

p1! · · · pn!
(p1 + · · ·+ pn)!

if h = k and pj = qj for all j.

Definition 2.13. Given Λ ∈Mn,n(C), we shall say that G ∈ Ôn
Λ is in second order

normal form if G = Λ or (G ̸= Λ and) the homogeneous expansion G = Λ+
∑
d≥µ

Gd

of G satisfies the following conditions:

(a) Gµ ̸= O;
(b) Gd ∈ Hd ∩ (ImLGµ,Λ)

⊥ for all d > µ (where we are using the Fischer Hermitian
product).

Given F ∈ Ôn
Λ, we shall say that G ∈ Ôn

Λ is a second order normal form of F if G

is in second order normal form and G = Φ−1 ◦ F ◦ Φ for some Φ ∈ Ôn
I .

We can now prove the existence of second order normal forms:

Theorem 2.14. Let Λ ∈ Mn,n(C) be given. Then each F ∈ Ôn
Λ admits a second

order normal form. More precisely, if F = Λ +
∑
d≥µ

Fd is in Poincaré-Dulac normal

form (and F ̸≡ Λ) then there exists a unique Λ-resonant Φ = I +
∑
d≥2

Hd ∈ Ôn
I such

that Hd ∈ (KerLFµ,Λ)
⊥ for all d ≥ 2 and G = Φ−1 ◦F ◦Φ is in second order normal

form. Furthermore, if Λ is diagonal we also have Gd ∈ Hd
Λ for all d ≥ µ.
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Proof. By the classical theory we can assume that F is in Poincaré-Dulac normal
form. If F ≡ Λ we are done; assume then that F ̸≡ Λ.

First of all, by Theorem 2.11 if Φ is Λ-resonant we have {Φ−1 ◦F ◦Φ}d = Fd for
all d ≤ µ. Now consider the splittings

Hd = ImLFµ,Λ|Hd−µ+1
Λ

⃝⊥ (ImLFµ,Λ|Hd−µ+1
Λ

)⊥

and
Hd−µ+1

Λ = KerLFµ,Λ|Hd−µ+1
Λ

⃝⊥ (KerLFµ,Λ|Hd−µ+1
Λ

)⊥ .

If d = µ + 1 we can find a unique Gµ+1 ∈ (ImLFµ,Λ)
⊥ ∩ Hµ+1 and a unique

H2 ∈ (KerLFµ,Λ)
⊥ ∩H2

Λ such that Fµ+1 = Gµ+1 +LFµ,Λ(H2). Then Theorem 2.11
yields

{Φ−1 ◦ F ◦ Φ}µ+1 = Fµ+1 − LFµ,Λ({Φ}2) = Gµ+1 + LFµ,Λ(H2)− LFµ,Λ({Φ}2) ;

so to get {Φ−1 ◦ F ◦ Φ}µ+1 ∈ (ImLFµ,Λ)
⊥ ∩Hµ+1 with {Φ}2 ∈ (KerLFµ,Λ)

⊥ ∩H2
Λ

we must necessarily take {Φ}2 = H2.
Assume, by induction, that we have uniquely determined

H2, . . . ,Hd−µ ∈ (ImLFµ,Λ)
⊥ ∩HΛ ,

and thus Rd ∈ Hd in (2.8). Hence there is a unique Gd ∈ (ImLFµ,Λ)
⊥ ∩ Hd and a

unique Hd−µ+1 ∈ (KerLFµ,Λ)
⊥∩Hd−µ+1

Λ such that Fd+Rd = Gd+LFµ,Λ(Hd−µ+1).

Thus to get {Φ−1 ◦ F ◦ Φ}d ∈ (ImLFµ,Λ)
⊥ ∩ Hd with {Φ}d−µ+1 ∈ (KerLFµ,Λ)

⊥ ∩
Hd−µ+1

Λ the only possible choice is {Φ}d−µ+1 = Hd−µ+1, and thus {Φ−1 ◦F ◦Φ}d =
Gd.

Finally, if Λ is diagonal then Fd ∈ Hd
Λ for all d ≥ µ. Furthermore, Lemma 2.7

yields ImLFµ,Λ|Hd−µ+1
Λ

⊆ Hd
Λ for all d ≥ µ; recalling Theorem 2.11.(vi) we then see

can we can always find Gd ∈ Hd
Λ, and we are done. �

The definition and construction of k-th order normal forms is similar; the idea is
to extract from the remainder term Rν the pieces depending on Hγ with γ varying
in a suitable range, and use them to build operators generalizing LΛ and LP,Λ.
Since we shall not need it here we refer to [38] for details; for our needs it suffices

to recall that given F = Λ+
∑

d≥2 Fd ∈ Ôn
Λ it is possible to introduce a sequence of

(not necessarily linear) operators L(d)[Λ, F2, . . . , Fd]: KerL(d−1)×Hd+1 → Hd+1 for
d ≥ 1, with L(1)[Λ](H2) = LΛ(H2) and L(2)[Λ, F2](H2,H3) = LΛ(H3) +LF2,Λ(H2).

Definition 2.15. We shall say that G = Λ+
∑
d≥2

Gd ∈ Ôn
Λ is in infinite order normal

form if Gd ∈W⊥
d for all d ≥ 2, whereWd is a vector subspace of maximal dimension

contained in the image of L(d−1)[Λ, G2, . . . , Gd−1]. We shall also say that G is an

infinite order normal form of F ∈ Ôn
Λ if it is in infinite order normal form and it is

formally conjugated to F .

We end this section quoting a result from [38] giving a condition ensuring that a
second order normal form is actually an infinite order normal form:

Proposition 2.16. ([38, Theorem 4.9]) Let Λ ∈ Mn,n(C) be diagonal, and F =

Λ +
∑
d≥2

Fd ∈ Ôn
Λ with F2 ̸= O and Λ-resonant. Assume that KerLF2,Λ|Hd

Λ
= {O}
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for all d ≥ 2. Then the second order normal form of F is the unique infinite order
normal form of F .

3. Superattracting germs. In this section we shall completely describe the
second order normal forms obtained when n = µ = 2 and Λ = O, that is for
2-dimensional superattracting germs with non-vanishing quadratic term. Except
in four degenerate instances, the second order normal forms will be infinite order
normal forms, and will be expressed just in terms of two power series of one variable,
thus providing a drastic simplification of the germs.

In [1] we showed that, up to a linear change of variable, we can assume that the
quadratic term F2 is of one (and only one) of the following forms:

(∞) F2(z, w) = (z2, zw);
(100) F2(z, w) = (0,−z2);
(110) F2(z, w) =

(
−z2,−(z2 + zw)

)
;

(111) F2(z, w) =
(
−zw,−(z2 + w2)

)
;

(2001) F2(z, w) = (0, zw);
(2011) F2(z, w) = (zw, zw + w2);
(210ρ) F2(z, w) =

(
−ρz2, (1− ρ)zw), with ρ ̸= 0;

(211ρ) F2(z, w) =
(
ρz2 + zw, (1 + ρ)zw + w2

)
, with ρ ̸= 0;

(3100) F2(z, w) = (z2 − zw, 0);
(3ρ10) F2(z, w) =

(
ρ(−z2 + zw), (1− ρ)(zw − w2)

)
, with ρ ̸= 0, 1;

(3ρτ1) F2(z, w) =
(
−ρz2 + (1− τ)zw, (1− ρ)zw− τw2

)
, with ρ, τ ̸= 0 and ρ+ τ ̸= 1

(where the labels refer to the number of characteristic directions and to their indices;
see also [4]).

We shall use the standard basis {ud,j , vd,j}j=0,... ,d of Hd, where

ud,j = (zjwd−j , 0) and vd,j = (0, zjwd−j) ,

and we endow Hd with the Fischer Hermitian product, so that {ud,j , vd,j}j=0,... ,d

is an orthogonal basis and

∥ud,j∥2 = ∥vd,j∥2 =

(
d

j

)−1

.

When Λ = O, we have HΛ = H, and the operator L = LF2,Λ:Hd → Hd+1 is
given by

L(H) = − Jac(F2) ·H .

To apply Proposition 2.16, we need to know when KerL|Hd = {O}. Since

dimKerL|Hd + dim ImL|Hd = dimHd = dimHd+1 − 2

= dim ImL|Hd + dim(ImL|Hd)⊥ − 2 ,

we find that

KerL|Hd = {O} if and only if dim(ImL|Hd)⊥ = 2 . (3.1)

We shall now study separately each case.
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• Case (∞).
In this case we have

L(ud,j) = −2ud+1,j+1 − vd+1,j and L(vd,j) = −vd+1,j+1

for all d ≥ 2 and j = 0, . . . , d. Therefore

ImL|Hd = Span (ud+1,2, . . . , ud+1,d+1, 2ud+1,1 + vd+1,0, vd+1,1, . . . , vd+1,d+1) ,

and thus

(ImL|Hd)⊥ = Span (ud+1,0, (d+ 1)ud+1,1 − 2vd+1,0) .

In particular, thanks to (3.1) and Proposition 2.16, a second order normal form is
automatically an infinite order normal form.

It then follows that every formal power series of the form

F (z, w) = (z2 +O3, zw +O3)

(where O3 denotes a remainder term of order at least 3) has a unique infinite order
normal form

G(z, w) =
(
z2 + φ(w) + zψ′(w), zw − 2ψ(w)

)
where φ, ψ ∈ C[[ζ]] are power series of order at least 3. Notice that (here and in
later formulas) the appearance of the derivative (which simplifies the expression of
the normal form) is due to the fact we are using the Fischer Hermitian product;
using another Hermitian product might lead to more complicated normal forms.

• Case (100).
In this case we have

L(ud,j) = 2vd+1,j+1 and L(vd,j) = 0

for all d ≥ 2 and j = 0, . . . , d. Therefore

ImL|Hd = Span (vd+1,1, . . . , vd+1,d+1) ,

and thus

(ImL|Hd)⊥ = Span (ud+1,0, . . . , ud+1,d+1, vd+1,0) .

This is a degenerate case, where we cannot use Proposition 2.16. Anyway, Theo-
rem 2.14 still apply, and it follows that every formal power series of the form

F (z, w) = (O3,−z2 +O3)

has a second order normal form

G(z, w) =
(
Φ(z, w),−z2 + ψ(w)

)
where ψ ∈ C[[ζ]] and Φ ∈ C[[z, w]] are power series of order at least 3.
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• Case (110).
In this case we have

L(ud,j) = 2ud+1,j+1 + 2vd+1,j+1 + vd+1,j and L(vd,j) = vd+1,j+1

for all d ≥ 2 and j = 0, . . . , d. Therefore

ImL|Hd = Span (2ud+1,1 + vd+1,0, ud+1,2, . . . , ud+1,d+1, vd+1,1, . . . , vd+1,d+1) ,

and thus
(ImL|Hd)⊥ = Span (ud+1,0, (d+ 1)ud+1,1 − 2vd+1,0) .

It then follows that every formal power series of the form

F (z, w) = (−z2 +O3,−z2 − zw +O3)

has a unique infinite order normal form

G(z, w) =
(
−z2 + φ(w) + zψ′(w),−z2 − zw − 2ψ(w)

)
where φ, ψ ∈ C[[ζ]] are power series of order at least 3.

• Case (111).
In this case we have

L(ud,j) = ud+1,j + 2vd+1,j+1 and L(vd,j) = ud+1,j+1 + 2vd+1,j

for all d ≥ 2 and j = 0, . . . , d. It follows that

ImL|Hd = Span(ud+1,0 − ud+1,2, . . . , ud+1,d−1 − ud+1,d+1,

vd+1,2 − vd+1,0, . . . , vd+1,d+1 − vd+1,d−1,

ud+1,0 + 2vd+1,1, ud+1,1 + 2vd+1,0) ,

and a few computations yield

(ImL|Hd)⊥ = Span

d+1∑
j=0

(
d+ 1

j

)
(vd+1,j − 2ud+1,j),

d+1∑
j=0

(−1)j
(
d+ 1

j

)
(vd+1,j + 2ud+1,j)


= Span

((
−2(z + w)d+1, (z + w)d+1

)
,
(
2(w − z)d+1, (w − z)d+1

))
.

It then follows that every formal germ of the form

F (z, w) = (−zw +O3,−z2 − w2 +O3)

has a unique infinite order normal form

G(z, w) =
(
−zw − 2φ(z + w) + 2ψ(w − z),−z2 − w2 + φ(z + w) + ψ(w − z)

)
where φ, ψ ∈ C[[ζ]] are arbitrary power series of order at least 3. Again, the fact
that the normal form is expressed in terms of power series evaluated in z + w and
z − w is due to the fact we are using the Fischer Hermitian product.
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• Case (2001).

In this case we have

L(ud,j) = −vd+1,j and L(vd,j) = −vd+1,j+1

for all d ≥ 2 and j = 0, . . . , d. It follows that

ImL|Hd = Span (vd+1,0, . . . , vd+1,d+1)

and hence

(ImL|Hd)⊥ = Span (ud+1,0, . . . , ud+1,d+1) .

We are in a degenerate case; hence every formal germ of the form

F (z, w) = (O3, zw +O3)

has a second order normal form

G(z, w) =
(
Φ(z, w), zw

)
where Φ ∈ C[[z, w]] is a power series of order at least three.

• Case (2011).

In this case we have

L(ud,j) = −ud+1,j − vd+1,j and L(vd,j) = −ud+1,j+1 − 2vd+1,j − vd+1,j+1

for all d ≥ 2 and j = 0, . . . , d. It follows that

ImL|Hd = Span(ud+1,0, . . . , ud+1,d−1, vd+1,0, . . . , vd+1,d−1,

ud+1,d + vd+1,d, ud+1,d+1 + vd+1,d+1 + 2vd+1,d) ,

and hence

(ImL|Hd)⊥

= Span ((d+ 1)ud+1,d − (d+ 1)vd+1,d + 2vd+1,d+1, ud+1,d+1 − vd+1,d+1) .

It then follows that every formal germ of the form

F (z, w) = (zw +O3, zw + w2 +O3)

has a unique infinite order normal form

G(z, w) =
(
zw + wφ′(z) + ψ(z), zw + w2 + 2φ(z)− wφ′(z)− ψ(z)

)
,

where φ, ψ ∈ C[[ζ]] are power series of order at least 3.
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• Case (210ρ).
In this case we have

L(ud,j) = 2ρud+1,j+1 + (ρ− 1)vd+1,j and L(vd,j) = (ρ− 1)vd+1,j+1

for all d ≥ 2 and j = 0, . . . , d. We clearly have two subcases to consider.
If ρ = 1 then

ImL|Hd = Span (ud+1,1, . . . , ud+1,d+1) ,

and hence
(ImL|Hd)⊥ = Span (ud+1,0, vd+1,0, . . . , vd+1,d+1) .

We are in the third degenerate case; hence every formal germ of the form

F (z, w) = (−z2 +O3, O3)

has a second order normal form

G(z, w) =
(
−z2 + ψ(w),Φ(z, w)

)
,

where ψ ∈ C[[ζ]] and Φ ∈ C[[z, w]] are power series of order at least 3.
If instead ρ ̸= 1 (recalling that ρ ̸= 0 too) then

ImL|Hd

= Span (2ρud+1,1 + (ρ− 1)vd+1,0, ud+1,2, . . . , ud+1,d+1, vd+1,1, . . . , vd+1,d+1) ,

and hence

(ImL|Hd)⊥ = Span (ud+1,0, (ρ− 1)(d+ 1)ud+1,1 − 2ρvd+1,0) .

It then follows that every formal germ of the form

F (z, w) =
(
−ρz2 +O3, (1− ρ)zw +O3

)
with ρ ̸= 0, 1 has a unique infinite order normal form

G(z, w) =
(
−ρz2 + (ρ− 1)zφ′(w) + ψ(w), (1− ρ)zw − 2ρφ(z)

)
,

where φ, ψ ∈ C[[ζ]] are power series of order at least 3.

• Case (211ρ).
In this case we have{

L(ud,j) = −2ρud+1,j+1 − ud+1,j − (1 + ρ)vd+1,j

L(vd,j) = −ud+1,j+1 − 2vd+1,j − (1 + ρ)vd+1,j+1

(3.2)

for all d ≥ 2 and j = 0, . . . , d. We clearly have two subcases to consider.
If ρ = −1 then

ImL|Hd = Span
(
ud+1,0 − 2ud+1,1, . . . ,ud+1,d − 2ud+1,d+1,

ud+1,1 + 2vd+1,0, . . . , ud+1,d + 2vd+1,d

)
,
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and hence

(ImL|Hd)⊥ = Span

d+1∑
j=0

(
d+ 1

j

)
1

2j
(ud+1,j −

1

4
vd+1,j), vd+1,d+1


= Span

(((
z
2 + w

)d+1
,−1

4

(
z
2 + w

)d+1
)
, (0, zd+1)

)
.

It then follows that every formal germ of the form

F (z, w) = (−z2 + zw +O3, w
2 +O3)

has a unique infinite order normal form

G(z, w) =

(
−z2 + zw + φ( z2 + w), w2 − 1

4
φ( z2 + w) + ψ(z)

)
,

where φ, ψ ∈ C[[ζ]] are power series of order at least 3.
If instead ρ ̸= −1 (recalling that ρ ̸= 0 too) then a basis of ImL|Hd is given by

the vectors listed in (3.2), and a computation shows that (ImL|Hd)⊥ is given by
homogeneous maps of the form

d+1∑
j=0

(ajud+1,j + bjvd+1,j)

where the coefficients aj , bj satisfy the following relations:

cjbj = − 2

1 + ρ
cj−1bj−1 −

1

ρ(1 + ρ)
cj−2bj−2 for j = 2, . . . , d+ 1,

cjaj =
1

ρ
cj−2bj−2 for j = 2, . . . , d+ 1,

a0 = (3ρ− 1)b0 + 2
ρ(1 + ρ)

d+ 1
b1 ,

a1 = −2(d+ 1)b0 − (1 + ρ)b1 ,

where c−1
j =

(
d+1
j

)
and b0, b1 ∈ C are arbitrary. Solving these recurrence equations

one gets

bj =
1

2
√
−ρ

(
d+ 1

j

)[
ρ(1 + ρ)

d+ 1
(mj

ρ − njρ)b1 +
(
ρ(mj

ρ − njρ) +
√
−ρ(mj

ρ + njρ)
)
b0

]
,

where
√
−ρ is any square root of −ρ, and

mρ =

√
−ρ− ρ

ρ(1 + ρ)
, nρ = −

√
−ρ+ ρ

ρ(1 + ρ)
.

It follows that the unique infinite order normal form of a formal germ of the form

F (z, w) =
(
ρz2 + zw +O3, (1 + ρ)zw + w2 +O3

)
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with ρ ̸= 0, −1 is

G(z, w) =

(
ρz2 + zw +

1

ρ

[
1−

√
−ρ

2m2
ρ

φ(mρz + w) +
1 +

√
−ρ

2n2ρ
φ(nρz + w)

]
+

1 + ρ

2
√
−ρ

(
1

m2
ρ

ψ(mρz + w)− 1

n2ρ
ψ(nρz + w)

)
,

(1 + ρ)zw + w2 +
1−

√
−ρ

2
φ(mρz + w) +

1 +
√
−ρ

2
φ(nρz + w)

+
ρ(1 + ρ)

2
√
−ρ

(
ψ(mρz + w)− ψ(nρz + w)

))
where φ, ψ ∈ C[[ζ]] are power series of order at least 3.

• Case (3100).
In this case we have

L(ud,j) = ud+1,j − 2ud+1,j+1 and L(vd,j) = ud+1,j+1

for all d ≥ 2 and j = 0, . . . , d. It follows that

ImL|Hd = Span (ud+1,0, . . . , ud+1,d+1)

and hence
(ImL|Hd)⊥ = Span (vd+1,0, . . . , vd+1,d+1) .

We are in the last degenerate case; hence every formal germ of the form

F (z, w) = (z2 − zw +O3, O3)

has a second order normal form

G(z, w) =
(
z2 − zw,Φ(z, w)

)
,

where Φ ∈ C[[z, w]] is a power series of order at least 3.

• Case (3ρ10).
In this case we have{

L(ud,j) = ρ(2ud+1,j+1 − ud+1,j) + (ρ− 1)vd+1,j

L(vd,j) = −ρud+1,j+1 + (ρ− 1)(vd+1,j+1 − 2vd+1,j)
(3.3)

for all d ≥ 2 and j = 0, . . . , d. Then a basis of ImL|Hd is given by the homoge-
neous maps listed in (3.3), and a computation shows that (ImL|Hd)⊥ is given by
homogeneous maps of the form

d+1∑
j=0

(ajud+1,j + bjvd+1,j)

where the coefficients aj , bj satisfy the following relations:
cj+1aj+1 =

ρ− 1

ρ
(cj+1bj+1 − 2cjbj) for j = 0, . . . , d,

cj+1bj+1 = 2cjbj − cj−1bj−1 for j = 1, . . . , d,

c0a0 = 2c1a1 +
ρ− 1

ρ
c0b0 ,
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where c−1
j =

(
d+1
j

)
and b0, b1 ∈ C are arbitrary. Solving these recurrence equations

we find  bj =
(
d+1
j

) [
j

d+1b1 − (j − 1)b0

]
for j = 0, . . . , d+ 1,

aj =
ρ−1
ρ

(
d+1
j

) [
2−j
d+1b1 + (j − 3)b0

]
for j = 0, . . . , d+ 1,

where b0, b1 ∈ C are arbitrary. So every formal germ of the form

F (z, w) =
(
ρ(−z2 + zw) +O3, (1− ρ)(zw − w2) +O3

)
with ρ ̸= 0, 1 has a unique infinite order normal form

G(z, w) =

(
ρ(−z2 + zw) + z

∂

∂z

[
φ(z + w) + ψ(z + w)

]
− φ(z + w),

(1− ρ)(zw − w2)

+
ρ− 1

ρ

(
z
∂

∂z

[
φ(z + w)− ψ(z + w)

]
− 3φ(z + w) + 2ψ(z + w)

))
where φ, ψ ∈ C[[ζ]] are power series of order at least 3.

• Case (3ρτ1).
In this case we have

L(ud,j) = (τ − 1)ud+1,j + 2ρud+1,j+1 + (ρ− 1)vd+1,j

and
L(vd,j) = (τ − 1)ud+1,j+1 + 2τvd+1,j + (ρ− 1)vd+1,j+1

for all d ≥ 2 and j = 0, . . . , d. As before, we have a few subcases to consider.
Assume first ρ = τ = 1. Then

ImL|Hd = Span (ud+1,1, . . . , ud+1,d+1, vd+1,0, . . . , vd+1,d) ;

hence
(ImL|Hd)⊥ = Span (ud+1,0, vd+1,d+1) ,

It then follows that every formal germ of the form

F (z, w) = (−z2 +O3,−w2 +O3)

has a unique infinite order normal form

G(z, w) =
(
−z2 + φ(w),−w2 + ψ(z)

)
,

where φ, ψ ∈ C[[ζ]] are power series of order at least 3.
Assume now ρ ̸= 1. Then a computation shows that (ImL|Hd)⊥ is given by

homogeneous maps of the form

d+1∑
j=0

(ajud+1,j + bjvd+1,j)
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where the coefficients aj , bj satisfy the following relations:

cj+1aj+1 =
τ

ρ
cj−1bj−1 for j = 1, . . . , d,

cj+1bj+1 = − 2τ

ρ− 1
cjbj −

τ(τ − 1)

ρ(ρ− 1)
cj−1bj−1 for j = 1, . . . , d,

(τ − 1)c1a1 + (ρ− 1)c1b1 + 2τc0b0 = 0 ,

(τ − 1)c0a0 + (ρ− 1)c0b0 + 2ρc1a1 = 0 ,

(3.4)

where c−1
j =

(
d+1
j

)
and b0, b1 ∈ C are arbitrary.

When τ = 1 conditions (3.4) reduce to

cj+1aj+1 =
1

ρ
cj−1bj−1 for j = 1, . . . , d,

cj+1bj+1 = − 2

ρ− 1
cjbj for j = 1, . . . , d,

(ρ− 1)c1b1 + 2c0b0 = 0 ,

(ρ− 1)c0b0 + 2ρc1a1 = 0 ,

whose solution is
aj =

(
d+ 1

j

)
1

ρ

(
2

1− ρ

)j−2

b0 for j = 1, . . . , d+ 1,

bj =

(
d+ 1

j

)(
2

1− ρ

)j

b0 for j = 0, . . . , d+ 1,

where a0, b0 ∈ C are arbitrary. Therefore

(ImL|Hd)⊥

= Span

(
(wd+1, 0),

(
(1− ρ)2

4ρ

(
2

1− ρ
z + w

)d+1

,

(
2

1− ρ
z + w

)d+1
))

,

and thus every formal germ of the form

F (z, w) =
(
−ρz2 +O3, (1− ρ)zw − w2 +O3

)
with ρ ̸= 1 has a unique infinite order normal form

G(z, w) =

(
− ρz2 + φ(w) +

(1− ρ)2

4ρ
ψ

(
2

1− ρ
z + w

)
,

(1− ρ)zw − w2 + ψ

(
2

1− ρ
z + w

))
,

where φ, ψ ∈ C[[ζ]] are arbitrary power series of order at least 3.
The case ρ = 1 and τ ̸= 1 is treated in the same way; we get that every formal

germ of the form

F (z, w) =
(
−z2 + (1− τ)zw +O3,−τw2 +O3

)
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with τ ̸= 1 has a unique infinite order normal form

G(z, w) =

(
− z2 + (1− τ)zw + ψ

(
1− τ

2
z + w

)
,

− τw2 + φ(z) +
(1− τ)2

4τ
ψ

(
1− τ

2
z + w

))
,

where φ, ψ ∈ C[[ζ]] are power series of order at least 3.
Finally assume ρ, τ ̸= 1 (and ρ+ τ ̸= 1). Solving the recurrence equations (3.4)

we find

bj =
1

2
√
ρτ(ρ+ τ − 1)

(
d+ 1

j

)
×
[
ρ(ρ− 1)

d+ 1
(mj

ρ,τ − njρ,τ )b1

+
(
ρτ(mj

ρ,τ − njρ,τ ) +
√
ρτ(ρ+ τ − 1)(mj

ρ,τ + njρ,τ )
)
b0

]
,

for j = 0, . . . , d+1, where
√
ρτ(ρ+ τ − 1) is any square root of ρτ(ρ+ τ − 1), and

mρ,τ =

√
ρτ(ρ+ τ − 1)− ρτ

ρ(ρ− 1)
, nρ,τ = −

√
ρτ(ρ+ τ − 1) + ρτ

ρ(ρ− 1)
.

Moreover, from (3.4) we also get

aj =
τ

2ρ
√
ρτ(ρ+ τ − 1)

(
d+ 1

j

)
×
[
ρ(ρ− 1)

d+ 1
(mj−2

ρ,τ − nj−2
ρ,τ )b1

+
(
ρτ(mj−2

ρ,τ − nj−2
ρ,τ ) +

√
ρτ(ρ+ τ − 1)(mj−2

ρ,τ + nj−2
ρ,τ )

)
b0

]
,

again for j = 0, . . . , d+ 1. It follows that the unique infinite order normal form of
a formal germ of the form

F (z, w) =
(
−ρz2 + (1− τ)zw +O3, (1− ρ)zw − τw2 +O3

)
with ρ, τ ̸= 0, 1 and ρ+ τ ̸= 1, is

G(z, w) =

(
−ρz2 + (1− τ)zw +

τ

ρ

[√
ρ+ τ − 1 +

√
ρτ

2m2
ρ,τ

φ(mρ,τz + w)

+

√
ρ+ τ − 1−√

ρτ

2n2ρ,τ
φ(nρ,τz + w)

+
1

m2
ρ,τ

ψ(mρ,τz + w)− 1

n2ρ,τ
ψ(nρ,τz + w)

]
,

(1− ρ)zw − τw2 +

√
ρ+ τ − 1 +

√
ρτ

2
φ(mρ,τz + w)

+

√
ρ+ τ − 1−√

ρτ

2
φ(nρ,τz + w)

+ ψ(mρ,τz + w)− ψ(nρ,τz + w)

)
,
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where the square roots of ρτ and of ρ + τ − 1 are chosen so that their product is
equal to the previously chosen square root of ρτ(ρ + τ − 1), and φ, ψ ∈ C[[ζ]] are
power series of order at least 3 — and we have finished proving Theorem 1.1 and
Proposition 1.2.

4. Germs tangent to the identity. In this section we shall assume n = µ = 2 and
Λ = I, that is we shall be interested in 2-dimensional germs tangent to the identity
of order 2. We shall keep the notations introduced in the previous section. It should
be recalled that in his monumental work [20] (see [21] for a survey) Écalle studied
the formal classification of germs tangent to the identity in dimension n, giving
a complete set of formal invariants for germs satisfying a generic condition: the
existence of at least one non-degenerate characteristic direction (an eigenradius, in

Écalle’s terminology). A characteristic direction of a germ tangent to the identity F
is a non-zero direction v such that Fµ(v) = λv for some λ ∈ C, where Fµ is
the first (nonlinear) non-vanishing term in the homogeneous expansion of F . The
characteristic direction v is non-degenerate if λ ̸= 0.

For this reason, we decided to discuss here the cases without non-degenerate
characteristic directions, that is the cases (100), (110) and (2001), that cannot be

dealt with Écalle’s methods. Furthermore, we shall also study the somewhat special
case (∞), where all directions are characteristic; and we shall examine in detail case
(210ρ), where interesting second-order resonance phenomena appear.

When Λ = I the operator L = LF2,Λ is given by

L(H) = Jac(H) · F2 − Jac(F2) ·H .

In particular, L(F2) = O always; therefore we cannot apply Proposition 2.16 (nor
other similar conditions stated in [38]), and we shall compute the second order
normal form only.

• Case (∞).
In this case we have

L(ud,j) = (d− 2)ud+1,j+1 − vd+1,j and L(vd,j) = (d− 1)vd+1,j+1

for all d ≥ 2 and j = 0, . . . , d. Therefore

ImL|Hd =


Span

(
ud+1,2, . . . , ud+1,d+1,

(d− 2)ud+1,1 − vd+1,0, vd+1,1, . . . , vd+1,d+1

)
for d > 2,

Span (v3,0, . . . , v3,3) for d = 2.

Thus

(ImL|Hd)⊥ =

{
Span (ud+1,0, (d+ 1)ud+1,1 + (d− 2)vd+1,0) for d > 2,

Span (u3,0, . . . , u3,3) for d = 2.

It then follows that every formal power series of the form

F (z, w) = (z + z2 +O3, w + zw +O3)

has as second order normal form

G(z, w) =
(
z + z2 + a0z

3 + a1z
2w + a2zw

2 + φ(w) + zψ′(w),

zw + wψ′(w)− 3ψ(w)
)

where φ ∈ C[[ζ]] is a power series of order at least 3, ψ ∈ C[[ζ]] is a power series of
order at least 4 and a0, a1, a2 ∈ C.
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• Case (100).
In this case we have

L(ud,j) = (j − d)ud+1,j+2 + 2vd+1,j+1 and L(vd,j) = (j − d)vd+1,j+2

for all d ≥ 2 and j = 0, . . . , d. Therefore

ImL|Hd = Span (2vd+1,1 − dud+1,2, ud+1,3, . . . , ud+1,d+1, vd+1,2, . . . , vd+1,d+1) ,

and thus

(ImL|Hd)⊥ = Span (ud+1,0, ud+1,1, vd+1,0, ud+1,2 + vd+1,1) .

It then follows that every formal power series of the form

F (z, w) = (z +O3, w − z2 +O3)

has as second order normal form

G(z, w) =
(
z + wφ1(w) + zφ2(w) + z2ψ(w), w − z2 + wφ3(w) + zwψ(w)

)
,

where φ1, φ2, φ3 ∈ C[[ζ]] are power series of order at least 2, and ψ ∈ C[[ζ]] is a
power series of order at least 1.

• Case (110).
In this case we have

L(ud,j) = (2− d)ud+1,j+1 − (d− j)ud+1,j+2 + 2vd+1,j+1 + vd+1,j

and
L(vd,j) = (1− d)vd+1,j+1 − (d− j)vd+1,j+2

for all d ≥ 2 and j = 0, . . . , d. Therefore

ImL|Hd =


Span

(
(2− d)ud+1,1 + vd+1,0, ud+1,2, . . . , ud+1,d+1,

vd+1,1, . . . , vd+1,d+1

)
for d > 2,

Span (v3,0 − 2u3,2, u3,3, v3,1, v3,2, v3,3) for d = 2,

and thus

(ImL|Hd)⊥ =

{
Span (ud+1,0, (d+ 1)ud+1,1 + (d− 2)vd+1,0) for d > 2,

Span (u3,0, u3,1, 3u3,2 + 2v3,0) for d = 2.

It then follows that every formal power series of the form

F (z, w) = (z − z2 +O3, w − z2 − zw +O3)

has as second order normal form

G(z, w) =
(
z − z2 + φ(w) + a1zw

2 + 3a2z
2w + zψ′(w),

w − z2 − zw + 2a2w
3 + wψ′(w)− 3ψ(w)

)
,

where φ ∈ C[[ζ]] is a power series of order at least 3, ψ ∈ C[[ζ]] is a power series of
order at least 4, and a1, a2 ∈ C.
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• Case (2001).
In this case we have

L(ud,j) = (d− j)ud+1,j+1 − vd+1,j and L(vd,j) = (d− j − 1)vd+1,j+1

for all d ≥ 2 and j = 0, . . . , d. It follows that

ImL|Hd = Span (dud+1,1 − vd+1,0, ud+1,2, . . . , ud+1,d, vd+1,1, . . . , vd+1,d+1)

and hence

(ImL|Hd)⊥ = Span (ud+1,0, ud+1,d+1, (d+ 1)ud+1,1 + dvd+1,0) .

It then follows that every formal germ of the form

F (z, w) = (z +O3, w + zw +O3)

has as second order normal form

G(z, w) =
(
z + φ1(z) + φ2(w) + zψ′(w), zw + wψ′(w)− ψ(w)

)
where φ1, φ2, ψ ∈ C[[ζ]] are power series of order at least 3.

• Case (210ρ).
In this case we have{

L(ud,j) = (d− j − dρ+ 2ρ)ud+1,j+1 + (ρ− 1)vd+1,j ,

L(vd,j) = (d− j − dρ+ ρ− 1)vd+1,j+1 ,
(4.1)

for all d ≥ 2 and j = 0, . . . , d. Here we shall see the resonance phenomena we
mentioned at the beginning of this section: for some values of ρ the dimension of
the kernel of L|Hd increases, and in some cases we shall end up with a normal form
depending on power series evaluated in monomials of the form zb−awa.

Let us put

Ed =

{
d− j − 1

d− 1

∣∣∣∣ j = 0, . . . , d

}
\ {0} and Fd =

{
d− j

d− 2

∣∣∣∣ j = 0, . . . , d− 1

}
(we are excluding 0 because ρ ̸= 0 by assumption), where Ed is defined for all d ≥ 2
whereas Fd is defined for all d ≥ 3, and set

E =
∪
d≥2

Ed =
(
(0, 1] ∩Q

)
∪
{
− 1

n

∣∣∣∣ n ∈ N∗
}

and

F =
∪
d≥3

Fd =
(
(0, 1] ∩Q

)
∪
{
1 +

1

n
, 1 +

2

n

∣∣∣∣ n ∈ N∗
}
.

So E is the set of ρ ∈ C∗ such that L(vd,j) = 0 for some d ≥ 2 and 0 ≤ j ≤ d,
while F is the set of ρ ∈ C∗ such that L(ud,j) = (ρ − 1)vd+1,j for some d ≥ 3 and
0 ≤ j ≤ d− 1.
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Let us first discuss the non-resonant case, when ρ ̸∈ E ∪ F . Then none of the
coefficients in (4.1) vanishes, and thus

ImL|H2 = Span (2u3,1 + (ρ− 1)v3,0, u3,2, v3,1, v3,2, v3,3)

and

ImL|Hd = Span
(
(d− dρ+ 2ρ)ud+1,1 + (ρ− 1)vd+1,0,

ud+1,2, . . . , ud+1,d+1, vd+1,1, . . . , vd+1,d+1

)
,

for d ≥ 3, and hence

(ImL|Hd)⊥ =


Span (ud+1,0, (1− ρ)(d+ 1)ud+1,1 + (d(1− ρ) + 2ρ)vd+1,0)

for d ≥ 3,

Span (u3,0, u3,3, 3(1− ρ)u3,1 + 2v3,0) for d = 2.

It then follows that every formal germ of the form

F (z, w) = (z − ρz2 +O3, w + (1− ρ)zw +O3)

with ρ ̸∈ E ∪ F (and ρ ̸= 0) has as second order normal form

G(z, w) =
(
z − ρz2 + az3 + φ(w) + (1− ρ)zψ′(w),

w + (1− ρ)zw + (1− ρ)wψ′(w) + (3ρ− 1)ψ(z)
)
,

where φ, ψ ∈ C[[ζ]] are power series of order at least 3, and a ∈ C.
Assume now ρ ∈ F \ E . Then L(vd,j) ̸= O always, and thus vd+1,j ∈ ImL|Hd

for all d ≥ 2 and all j = 1, . . . , d + 1. Since ρ > 1, if d > 2 it also follows that
ud+1,j+1 ∈ ImL|Hd for j = 1, . . . , d.

Now, if ρ = 1 + (1/n) then

d

d− 2
= ρ ⇐⇒ d = 2(n+ 1) ,

and
d− 1

d− 2
= ρ ⇐⇒ d = n+ 2 .

Taking care of the case d = 2 separately, we then have

ImL|Hd

=



Span
(
(d− dρ+ 2ρ)ud+1,1 + (ρ− 1)vd+1,0, ud+1,2, . . . , ud+1,d+1,

vd+1,1, . . . , vd+1,d+1

)
for d ≥ 3, d ̸= n+ 2, 2(n+ 1),

Span
(
ud+1,1 + (ρ− 1)vd+1,0, ud+1,3, . . . , ud+1,d+1,

vd+1,1, . . . , vd+1,d+1

)
for d = n+ 2,

Span
(
ud+1,2, . . . , ud+1,d+1,

vd+1,0, . . . , vd+1,d+1

)
for d = 2(n+ 1),

Span (2u3,1 + (ρ− 1)v3,0, u3,2, v3,1, v3,2, v3,3) for d = 2,
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and hence

(ImL|Hd)⊥

=



Span (ud+1,0, (1− ρ)(d+ 1)ud+1,1 + (d(1− ρ) + 2ρ)vd+1,0)

for d ≥ 3, d ̸= n+ 2, 2(n+ 1),

Span (ud+1,0, ud+1,2, (1− ρ)(d+ 1)ud+1,1 + vd+1,0)

for d = n+ 2,

Span (ud+1,0, ud+1,1) for d = 2(n+ 1),

Span (u3,0, u3,3, 3(1− ρ)u3,1 + 2v3,0) for d = 2.

It then follows that every formal germ of the form

F (z, w) =

(
z −

(
1 +

1

n

)
z2 +O3, w − 1

n
zw +O3

)
with n ∈ N∗ has as second order normal form

G(z, w) =

(
z −

(
1 +

1

n

)
z2 + φ(w) + (1− ρ)zψ′(w) + a0z

3 + a1z
2wn+1,

w − 1

n
zw + (1− ρ)wψ′(w) + (3ρ− 1)ψ(w)

)
,

where φ, ψ ∈ C[[ζ]] are power series of order at least 3, and a0, a1 ∈ C.
If instead ρ = 1 + (2/m) with m odd (if m is even we are again in the previous

case) then
d

d− 2
= ρ ⇐⇒ d = m+ 2 ,

whereas d−1
d−2 ̸= ρ always. Hence

ImL|Hd

=


Span

(
(d− dρ+ 2ρ)ud+1,1 + (ρ− 1)vd+1,0, ud+1,2, . . . , ud+1,d+1,

vd+1,1, . . . , vd+1,d+1

)
for d ≥ 3, d ̸= m+ 2,

Span (ud+1,2, . . . , ud+1,d+1, vd+1,0, . . . , vd+1,d+1) for d = m+ 2,

Span (2u3,1 + (ρ− 1)v3,0, u3,2, v3,1, v3,2, v3,3) for d = 2,

and thus

(ImL|Hd)⊥ =


Span (ud+1,0, (1− ρ)(d+ 1)ud+1,1 + (d− dρ+ 2ρ)vd+1,0)

for d ≥ 3, d ̸= m+ 2,

Span (ud+1,0, ud+1,1) for d = m+ 2,

Span (u3,0, u3,3, 3(1− ρ)u3,1 + 2v3,0) for d = 2.

It then follows that every formal germ of the form

F (z, w) =

(
z −

(
1 +

2

m

)
z2 +O3, w − 2

m
zw +O3

)
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with m ∈ N∗ odd has as second order normal form

G(z, w) =

(
z −

(
1 +

2

m

)
z2 + φ(w) + a0z

3 + (1− ρ)z(wψ′(w) + ψ(w)),

w − 2

m
zw + (1− ρ)w2ψ′(w) + 2ρwψ(w)

)
,

where φ ∈ C[[ζ]] is a power series of order at least 3, ψ ∈ C[[ζ]] is a power series of
order at least 2, and a0 ∈ C.

Now let us consider the case ρ = −1/n ∈ E \ F . In this case the coefficients
in the expression of L(ud,j) are always different from zero (with the exception of
d = j = 2), whereas

d− j − dρ+ ρ− 1 = 0 ⇐⇒ j = d = n+ 1 .

It follows that

ImL|Hd

=



Span
(
(d− dρ+ 2ρ)ud+1,1 + (ρ− 1)vd+1,0, ud+1,2, . . . , ud+1,d+1,

vd+1,1, . . . , vd+1,d+1

)
for d ≥ 3, d ̸= n+ 1,

Span
(
(d− dρ+ 2ρ)ud+1,1 + (ρ− 1)vd+1,0, ud+1,2, . . . , ud+1,d+1,

vd+1,1, . . . , vd+1,d

)
for d = n+ 1,

Span (2u3,1 + (ρ− 1)v3,0, u3,2, v3,1, v3,2, v3,3) for d = 2,

and thus

(ImL|Hd)⊥

=



Span (ud+1,0, (1− ρ)(d+ 1)ud+1,1 + (d− dρ+ 2ρ)vd+1,0)

for d ≥ 3, d ̸= n+ 1,

Span (ud+1,0, vd+1,d+1, (1− ρ)(d+ 1)ud+1,1 + (d− dρ+ 2ρ)vd+1,0)

for d = n+ 1,

Span (u3,0, u3,3, 3(1− ρ)u3,1 + 2v3,0) for d = 2.

It then follows that every formal germ of the form

F (z, w) =

(
z +

1

n
z2 +O3, w +

(
1 +

1

n

)
zw +O3

)
with n ∈ N∗ has as second order normal form

G(z, w) =

(
z +

1

n
z2 + φ(w) + a0z

3 + (1− ρ)z(wψ′(w) + ψ(w)),

w +

(
1 +

1

n

)
zw + ψ(z) + a1z

n+2 + (1− ρ)w2ψ′(w) + 2ρwψ(w)

)
,

where φ ∈ C[[ζ]] is a power series of order at least 3, ψ ∈ C[[ζ]] is a power series of
order at least 2, and a0, a1 ∈ C.
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Let us now discuss the extreme case ρ = 1. It is clear that

ImL|Hd = Span (ud+1,1, ud+1,2, ud+1,4, . . . , ud+1,d+1, vd+1,2, . . . , vd+1,d+1) ,

and hence
(ImL|Hd)⊥ = Span (ud+1,0, ud+1,3, vd+1,0, vd+1,1) ,

It then follows that every formal germ of the form

F (z, w) =
(
z − z2 +O3, w +O3

)
has as second order normal form

G(z, w) =
(
z − z2 + φ1(w) + z3ψ(w), w + φ2(w) + zφ3(w)

)
,

where φ1, φ2 ∈ C[[ζ]] are power series of order at least 3, φ3 ∈ C[[ζ]] is a power series
of order at least 2, and ψ ∈ C[[ζ]] is a power series.

We are left with the case ρ ∈ (0, 1) ∩ Q. Write ρ = a/b with a, b ∈ N coprime
and 0 < a < b. Now

d− j − 1− a

b
(d− 1) = 0 ⇐⇒ j =

(d− 1)(b− a)

b
;

since a and b are coprime, this happens if and only if d = bℓ + 1 and j = (b − a)ℓ
for some ℓ ≥ 1. Analogously,

d− j − a

b
(d− 2) = 0 ⇐⇒ j = d− a(d− 2)

b
;

again, being a and b coprime, this happens if and only if d = bℓ+2 and j = (b−a)ℓ+2
for some ℓ ≥ 0. It follows that

ImL|Hd

=



Span
(
(d− dρ+ 2ρ)ud+1,1 + (ρ− 1)vd+1,0, ud+1,2, . . . , ud+1,d+1,

vd+1,1, . . . , vd+1,d+1

)
for d ≥ 3, d ̸≡ 1, 2 (mod b)

Span ((d− dρ+ 2ρ)ud+1,1 + (ρ− 1)vd+1,0,

ud+1,2, . . . , ̂ud+1,(b−a)ℓ+2, . . . , ud+1,d+1,

vd+1,1, . . . , ̂vd+1,(b−a)ℓ+1, . . . , vd+1,d+1,
a
bud+1,(b−a)ℓ+2 −

(
a
b − 1

)
vd+1,(b−a)ℓ+1) for d = bℓ+ 1,

Span ((d− dρ+ 2ρ)ud+1,1 + (ρ− 1)vd+1,0,

ud+1,2, . . . , ̂ud+1,(b−a)ℓ+3, . . . , ud+1,d+1t

vd+1,1, . . . , vd+1,d+1) for d = bℓ+ 2,

Span (2u3,1 + (ρ− 1)v3,0, u3,2, v3,1, v3,2, v3,3) for d = 2,

(where the hat indicates that that term is missing from the list), and thus

(ImL|Hd)⊥

=



Span
(
ud+1,0,

(1− ρ)ud+1,1 + (d− dρ+ 2ρ)vd+1,0

)
for d ≥ 3, d ̸≡ 1, 2 (mod b),

Span
(
(b− a)(aℓ+ 1)ud+1,(b−a)ℓ+2 + a

(
(b− a)ℓ+ 2

)
vd+1,(b−a)ℓ+1, ud+1,0,

(1− ρ)ud+1,1 + (d− dρ+ 2ρ)vd+1,0

)
for d = bℓ+ 1,

Span
(
ud+1,0, ud+1,(b−a)ℓ+3,

(1− ρ)ud+1,1 + (d− dρ+ 2ρ)vd+1,0

)
for d = bℓ+ 2,

Span (u3,0, u3,3, 3(1− ρ)u3,1 + 2v3,0) for d = 2.
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It then follows that every formal germ of the form

F (z, w) =
(
z − a

b
z2 +O3, w +

(
1− a

b

)
zw +O3

)
with a/b ∈ (0, 1) ∩Q and a, b coprime, has as second order normal form

G(z, w)

=

(
z − a

b
z2 + φ(w) + z3φ0(z

b−awa) + (b− a)
∂

∂w

(
z2wχ(zb−awa)

)
+
(
1− a

b

)
z(wψ′(w) + ψ(w)

)
,

w +
(
1− a

b

)
zw + a

∂

∂z

(
z2wχ(zb−awa)

)
+
(
1− a

b

)
w2ψ′(w) + 2

a

b
wψ(w)

)
,

where φ, ψ ∈ C[[ζ]] are power series of order at least 3, and φ0, χ ∈ C[[ζ]] are power
series of order at least 1 — and we have proved Proposition 1.3.
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tems” (G.Gentili, J. Guénot and G. Patrizio, eds.), Lect. Notes in Math. 1998, Springer,
Berlin, 2010, pp. 1–55.

[3] M. Abate and F. Tovena, Formal classification of holomorphic maps tangent to the identity,

Discrete Contin. Dyn. Syst., Suppl (2005), 1–10.
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