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Finsler Metrics of Constant Curvature
and the Characterization of Tube Domains

Marco Abate and Giorgio Patrizio

1. Introduction

In this paper we would like to give an instance of how (real!) Finsler geome-
try may find applications in problems of complex analysis. In particular we shall
show how the understanding of the classification of Finsler manifolds with vanish-
ing horizontal flag curvature together with the theory of complex Monge-Ampère
equation enables us to formulate characterizations, up to biholomorphic maps, of
special classes of domains in Cn.

Let us start with a simple example. Let D ⊂ Rn be a smooth strictly convex
domain and suppose that 0 ∈ D is the baricenter of D. The Minkowski functional
µ of D relative to the baricenter 0 is defined by µ(0) = 0 and for y ∈ Rn \ {0} by:

µ(y) = inf{1/t | t > 0 and ty /∈ D}.

Then µ ∈ C0(Rn) ∩ C∞(Rn \ {0}) and ρ = µ2 is a strictly convex function such
that R(t, x) = ρ(tx) defines a smooth function on R× Rn \ {0}. Let us identify

TRn ' Rn × Rn ' Rn ⊕ Rn ' Rn + iRn ' Cn.

The function µ defines a Minkowski metric F :TRn → R+ in the obvious way: if
y ∈ Tx(Rn) then F (x; y) = F (x + iy) = µ(y). Evidently F is a smooth strictly
convex real Finsler metric whose indicatrix at every point is given by the domain
D. Furthermore, if G = F 2 we recall that, because of the homogeneity property
G(x; ty) = ρ(ty) = t2ρ(y) which holds for all t ∈ R, one has for y 6= 0

G(y) =
∂2G

∂yα∂yβ
(y) yαyβ ,

where we are using the Einstein convention.
It is interesting to look at this construction from a different point of view. The

“indicatrix bundle” for the metric F is the trivial bundle Rn × D which, under
the above indicated identification of the tangent bundle of Rn with Cn, is exactly
the tube domain Rn + iD. If we denote by τ :Cn → R+ the function defined by
τ(z) = G(Imz) = F 2(Imz) then τ ∈ C0(Cn) ∩ C∞(Cn \ {Imz = 0}) and the
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function (t, z) = (t, x+ iy) 7→ τ(x+ ity) is of class C∞ on R× (Cn \ {Imz = 0}). A
simple calculation shows that in addition τ satisfies on Cn\{Imz = 0} the following
properties:

(1.1) ddcτ > 0,

(1.2) (ddc
√
τ)n ≡ 0.

Because of (1.1), ddcτ is the Kähler form of a metric h defined on Cn \ {Imz = 0}
which, according to our identifications, is exactly the complement of the zero section
of the tangent bundle of Rn. Since an elementary computation yields

∂2τ

∂zα∂z̄β
(x+ iy) =

1
4

∂2G

∂yα∂yβ
(y),

using the homogeneity property of G one sees that the real metric g = Reh asso-
ciated to h induces on Rn exactly the Finsler metric F defined above (see [AP]
for details on the relation between Finsler metrics on a manifold and Riemannian
metrics on the complement of the zero section of its tangent bundle).

More examples in this vein may be constructed. It is known that (see [GS],
[L], [LS], [PW1], [S]) given a complete Riemannian manifold M of nonnegative
sectional curvature it is possible to define a complex structure on its tangent
bundle TM so that M sits in TM as a totally real submanifold of top dimen-
sion. Moreover it is possible to define a smooth (in fact real analytic) function
τ0:TM → [0,+∞) such that τ−1

0 (0) = M (where we identify M with the zero
section in TM) and satisfying (1.1) on TM and (1.2) on the complement of the
zero section of TM . Deforming τ0 along the leaves of the Monge-Ampère folia-
tion as indicated in [PW2] it is possible to construct many continuous functions
τ :TM → [0,+∞) with τ−1(0) = M and such that on M̃ = TM \M , the comple-
ment of the zero section, τ is of class C∞ and satisfies on (1.1) and (1.2). As in the
example of tube domains it is possible to define a Riemannian metric on M̃ and
hence a real Finsler metric on M . It is a natural question to ask if, imposing some
natural condition on the function τ and on the Finsler metric induced on M , it is
possible to obtain a characterization, up to biholomorphic maps, of tube domains
as “indicatrix bundles”.

To give our result we need to specify the kind of singularity the function τ has
to possess. Let N be a complex manifold of (complex) dimension n. Let M be a
totally real submanifold of N of (real) dimension n. Let f be a function on N with
f ∈ C0(N)∩C∞(N \M). We say that f is transversally regular along M if for any
point p ∈ M and any coordinate system (z1, . . . , zn) = (x1 + iy1, . . . , xn + iyn) =
(x+ iy) on a neighborhood U of p so that M ∩ U = {y = 0}, the function

(t, z) = (t, x+ iy) 7→ f(x+ ity)

is of class C∞ on R× (U \ {y = 0}).
Furthermore, we shall need the notion of horizontal flag curvature of a real

Finsler metric. Given a Finsler manifold (M,F ) a standard construction (see [AP])
yields a splitting TM̃ = H ⊕ V of the tangent bundle to M̃ = TM \ M (the
complement of the zero section) in the sum of the vertical bundle V and a horizontal
bundle H; furthermore associated to F there is a Riemannian metric 〈 , 〉 on TM̃ ,
a metric connection ∇ (the so-called Cartan connection), and a natural section
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χ: M̃ → H. If we denote by Ω the curvature operator associated to∇, the horizontal
flag curvature of the Finsler metric F is the symmetric bilinear form R:H×H → R
given by

R(H,K) = 〈Ω(χ,H)K,χ〉.
This is the curvature term appearing in the second variation formula for Finsler
metrics, and so it seems to be the correct generalization of the Riemannian curvature
(see [AP] and [BC] for details).

With these notions we are ready to state our characterization:

Theorem 1.1. Let M be a simply connected differentiable manifold of (real)
dimension n and suppose that on TM is defined a complex structure so that M sits
in TM as a totally real submanifold of top dimension and there exists a function
τ :TM → [0,+∞) such that

(i) τ ∈ C0(TM) ∩ C∞(TM \M) and τ is transversally regular along M;
(ii) τ−1

0 (0) = M ;
(iii) ddcτ > 0 on M̃ = TM \M ;
(iv) (ddc

√
τ)n ≡ 0 on M̃ ;

(v) the metric defined by ddcτ on M̃ induces on M a real Finsler metric F of
vanishing horizontal flag curvature.

Then M is isometric to Rn equipped with a Minkowski metric F0. Furthermore
TM is biholomorphic to Cn and, if D is the indicatrix of the metric F0, then the
tubular neighborhood T (M) = {z ∈ TM | τ(z) < 1} of M is biholomorphic to the
tube domain Rn + iD.

The proof of Theorem 1.1 has two main steps. The first, which will be per-
formed in Section 2, is to characterize flat simply connected Finsler manifolds. The
second is to make the necessary adjustment in the arguments given in [PW1] for
the case of Riemannian manifolds to show that TM is biholomorphic to Cn and
T (M) to a tube domain. We shall outline this part in Section 3. Section 2 uses
heavily results of [AP], and Section 3 of [PW1]; hence we shall rely freely upon
these two references for notations, notions and technicalities, giving here only the
elements needed to reconstruct the proofs.

2. The Cartan-Ambrose-Hicks Theorem for real Finsler metrics

We need a classification of “Finsler space forms” at least in the flat case. To
this end it is necessary to compare Finsler manifold with “the same” horizontal flag
curvature as it is done in Riemannian geometry. Results of this kind are probably
available in the literature (see [R] for instance). Nevertheless, using the machinery
introduced in [AP] it is possible to give a proof which follows very closely the line
of the corresponding Riemaniann result (see [CE]).

Let M and M be two complete real Finsler manifolds of dimension n, with
Finsler metrics F and F respectively, and take p ∈ M and p ∈ M . Assume there
is a homogeneous isometry I:TpM → TpM . For any geodesic σ issuing from p in
M , denote by Aσ the parallel transport along σ, and by σ = expp ◦I ◦ exp−1

p ◦σ
the geodesic in M issuing from p in the direction I

(
σ̇(0)

)
. In particular, if σ

connects p to q ∈M , and σ connects p to q in M , we get a homogeneous isometry
Iσ:TqM → TqM by setting Iσ = Aσ ◦ I ◦ A−σ. Furthermore, for any v ∈ TqM we
get a map Ivσ :Hv → HIσ(v) by setting

Ivσ = χIσ(v) ◦ Iσ ◦ χ−1
v .
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Denote by Ω the curvature operator of M , and by Ω the curvature operator of
M . We shall say that I preserves the horizontal flag curvature if

Ω
(
χ, Iσ(v)H

)
χ = I σ̇σ

(
Ω(χ, vH)χ

)
for all geodesics σ and all v ∈ TσM , where χ (respectively, χ) is the horizontal
radial vector field of M (respectively, of M ; see [AP] for definitions).

Then we have the following:

Theorem 2.1 (Cartan-Ambrose-Hicks Theorem for Finsler metrics). Let M
and M be two complete real Finsler manifolds of dimension n, with M simply
connected. Assume that for some p ∈ M and p ∈ M there is a homogeneous
isometry I:TpM → TpM preserving the horizontal flag curvature. Then the map
Φ:M → M given by σ(t) 7→ Φ

(
σ(t)

)
= σ(t) for any geodesic σ issuing from p is

well defined. Furthermore, Φ is a local isometry and hence a covering map.

Proof. It is very similar to the classical one. It suffices to remark that if J is
a Jacobi field along σ in M , and J = Iσ ◦ J , then J is a Jacobi field along σ in M .
This follows from the fact that I preserves the horizontal flag curvature, and from
the equality

I σ̇σ
(
χ(σ̇)

)
= χ

(
σ̇)
)
.

Then using the theory developed in [AP] it is possible to repeat almost word
by word the proof of the classical Cartan-Ambrose-Hicks Theorem described in
Theorem 1.36 of [CE] ¤

Corollary 2.2. Let (M,F ) be a complete simply connected real Finsler mani-
fold of dimension n with vanishing horizontal flag curvature. Let F̂ be the restriction
of F to any tangent space TpM . Then F̂ defines a Minkowski metric on Rn ' TM
so that expp: (Rn, F̂ )→ (M,F ) is an isometry.

Proof. This follows from Theorem 2.1 and from the fact that the vanishing
of the horizontal flag curvature implies Ω(χ,H)χ ≡ 0, thanks to Proposition 1.4.5
of [AP]. ¤

3. The proof of Theorem 1.1

Corollary 2.2 proves the first part of the conclusion of Theorem 1.1 and shows
in particular that TM is diffeomorphic to TRn ' Rn + iRn ' Cn. Following the
ideas of [PW1] we shall now show that in fact they are biholomorphic. To this end
we must define a suitable map from Rn + iRn ' Cn to TM .

We must recall a few results on Monge-Ampère foliations. Since τ satisfies
(1.1) and (1.2), according to [PW1, Section 3], TM \M is foliated by Riemann
surfaces which are exactly the maximal complex submanifolds along which

√
τ is

harmonic. Furthermore the leaves of this foliation are totally geodesic flat (with
respect to the Kähler metric ddcτ) submanifolds of TM \M , and the normalized
gradient ∇τ/‖∇τ‖ of τ is tangent to the geodesic flow normal to M . In fact as τ is
transversally regular along M , if p ∈M ⊂ TM and v is tangent to M (considered
as a totally real submanifold of TM), it is meaningful to consider geodesics on TM
starting from p tangent to Jv, where J is the complex structure of TM .
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If σ:R→M is a (normalized) geodesic of M with respect to the Finsler metric
induced on M by the metric ddcτ on TM \M , define a map Σσ:R2 → TM by

Σσ(s, t) = expσ(t)(−sJσ̇′(t)).

Then the proof of Theorem 5.1 of [PW1] shows that the image Lσ of Σσ is a
complex submanifold of TM such that

√
τ restricted to Lσ \M = Lσ ∩ {τ > 0} is

harmonic. In other words for each normalized geodesic σ of M , the submanifold Lσ
is an extended leaf of the Monge-Ampère foliation associated to

√
τ . Let us note

that for any normalized geodesic σ of M the restriction of the metric ddcτ to
Lσ ∩ {τ > 0} extends to a flat metric on Lσ which therefore is, being simply
connected, biholomorphically isometric to C via the map (t+ is) 7→ Σσ(s, t).

Let F0 be the Minkowski metric on Rn given by Corollary 2.2, so that there
exists an isometry Φ: (Rn, F0) → (M,F ) where F is the Finsler metric on M in-
duced by τ . Let also τ0 be the function on Cn obtained by taking the square of the
Minkowski functional of the indicatrix of F0. Then the same considerations devel-
oped above for the Monge-Ampère foliation on TM may be repeated for TRn ' Cn
equipped with the function τ0. Imitating the proof of Theorem 5.2 of [PW1], we
define a map Ψ:Rn + iRn ' Cn → TM in the following way. Let σ0 be any nor-
malized geodesic for (Rn, F0) — i.e., a straight line suitably parametrized — and
let Σσ0 be the parametrization of the corresponding extended leaf. Let σ = Φ(σ0)
be the geodesic of (M,F ) image of σ0 via the isometry Φ, and Σσ the associated
parametrization. Then we set

Ψ
(
Σσ0(s, t)

)
= Σσ(s, t).

The map Ψ is well defined, bijective, holomorphic when restricted to any complex-
ification in Cn of straight line of Rn, and such that the map

(x, r, y) 7→ Ψ(x+ iry)

is smooth for all r ∈ R, x ∈ Rn, y ∈ Rn \ {0}. In fact, under the correct identifi-
cations of the corresponding complex structures, the map Ψ is just the differential
of the isometry Φ, and thus it is smooth. But then it follows from a Hartogs
theorem due to Sibony and Wong (see [SW]) that Ψ is holomorphic and hence
biholomorphic.

As τ0 is the distance squared from Rn in Cn and τ the distance squared from M
in TM , it follows also that if D is the indicatrix of F0 then Rn + iD is mapped
biholomorphically by Ψ onto the “indicatrix bundle” TM — and thus the proof is
complete.
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Open problems

Marco Abate and Giorgio Patrizio

1. Classify simply connected Kähler Finsler manifolds with constant negative
holomorphic curvature.

2. Under which hypotheses does weakly Kähler imply Kähler?
3. Is it true that the Kobayashi metric of strongly convex bounded domains in

Cn is Kähler? (It is always weakly Kähler).
4. Describe the (necessarily affine) isometric biholomorphisms of complex

Minkowski spaces (i.e., of Cn endowed with a complex Minkowski metric).
5. Classify under biholomorphic equivalence tubular neighborhoods of the zero

section in the tangent bundle of complete Riemannian manifolds with nonnegative
sectional curvature.
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