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Abstract

We construct the Atiyah classes of holomorphic vector bundles
using (1, 0)-connections and developing a Chern-Weil type theory, al-
lowing us to effectively compare Chern and Atiyah forms. Combining
this point of view with the Čech-Dolbeault cohomology, we prove sev-
eral results about vanishing and localization of Atiyah classes, as well
as some applications. In particular, we prove a Bott type vanishing
theorem for (not necessarily involutive) holomorphic distributions.
As an example we also present an explicit computation of the residue
of a singular distribution on the normal bundle of an invariant sub-
manifold that arises from the Camacho-Sad type localization.
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0 Introduction

Characteristic classes are invariants of manifolds providing obstructions to
the existence of certain geometric objects. For instance, it is well-known
that the existence of a non-singular vector field on a manifold M implies
the vanishing of the top Chern class of M . Roughly speaking, character-
istic classes detect the necessary existence of singularities (e.g., zeros of a
vector field) of the given geometric object; and thus it is only natural to
expect that, in a suitable sense, characteristic classes might be localized
nearby those singularities. Residue (or index) theory systematically deals
with such a localization procedure, and the results yield interesting and deep
informations both on the manifold and on the geometric object.

This approach has been developed with considerable success for Chern
classes and singular holomorphic foliations, starting with the seminal work
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of P. Baum and R. Bott [6] up to very recent applications. It is based
on the Bott vanishing theorem, which says that the characteristic forms
associated to certain Chern polynomials vanish in the presence of actions
of (or of partial connections along) non-singular holomorphic foliations, i.e.,
involutive subbundles of the holomorphic tangent bundle. This suggests
that in general the corresponding characteristic classes should localize at
the singular set of a holomorphic foliation, and thus it should be possible to
express them using (suitably defined) residues.

In this way important index theorems have been proved; for the normal
sheaf of a foliation (using Baum-Bott residues; see, e.g., [5], [6], [13]), for the
normal sheaf of invariant subvarieties (using Camacho-Sad residues; see, e.g.,
[12], [17], [18]), and for the normal sheaf of the foliation along an invariant
subvariety (using the so-called variation residues; see, e.g., [23]). In turns,
these index theorems had important applications to dynamics. Just to give
a couple of examples, the Camacho-Sad index theorem is crucial in the
proof by C. Camacho and P. Sad of the existence of separatrices for germs
of singular holomorphic vector fields in C2 (see [12]); or, very recently, it
has been effectively used by D. Maŕın and J.-F. Mattei in their topological
classification of generic holomorphic foliations in C2 nearby a singular point
(see [19]). We also list [10] as a literature with ample applications of these
residue theorems.

Localization of Chern classes has proved to be useful in discrete dynam-
ics too. For instance, in [1] (see also [8]) an analogous for holomorphic
self-maps of the Camacho-Sad theorem is proved and applied to show the
existence of parabolic curves for germs of holomorphic self-maps tangent to
the identity in C2; and analogues for holomorphic self-maps, valid in any
dimension, of Baum-Bott, Camacho-Sad and variation index theorems and
residues, with further applications to discrete dynamics, have been given in
[2]. Furthermore, in [3] it is shown how these results, both for foliations
and for self-maps, fit into a unified theory which can be described in the
framework of residue theory of partial holomorphic connections.

It should also be mentioned that localization techniques can also be ap-
plied to the study of characteristic classes of singular varieties, as sum-
marized in [9]. The residue theory in this framework leads to an analytic
intersection theory on singular varieties [24]. See also [22] for another devel-
opment in this direction.

The present paper is devoted to study the localization of Atiyah classes of
holomorphic vector bundles. Such classes have been introduced by M. Atiyah
in [4] as Dolbeault cohomology classes providing obstructions to the exis-
tence of holomorphic connections on a given holomorphic vector bundle.
Since then, Atiyah classes have been interpreted and used very much in dif-
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ferent contexts, for instance, in studying Kähler and hyper-Kähler manifolds
and Hochschild cohomology (see, e.g., [15], [20], [11]).

Our main result (see Theorem 6.10 for the complete statement) is a
vanishing theorem (analogous to the Bott vanishing theorem) for Atiyah
forms in presence of not necessarily involutive holomorphic distributions:

Theorem 0.1 Let M be a complex manifold of dimension n and F a holo-
morphic subbundle of rank r of TM . Let E be a holomorphic vector bundle
over M and (F, δ) a holomorphic partial connection for E. If ∇ is a con-
nection for E extending δ, then

ad(∇) ≡ 0

for all d > n − r, where ad(∇) denotes the Atiyah form of bidegree (d, d).

This result provides the foundation for the residue theory of singular (and
not necessarily involutive) distributions that we shall describe in Section 8.
As an application, we present a Camacho-Sad type result (Theorem 7.1);
and we shall also work out an explicit example (Section 9).

To obtain these results, we exploit a presentation of Atiyah forms and
classes based on a Chern-Weil type construction via C∞ connections of type
(1, 0) and expressed by using Čech-Dolbeault cohomology. This viewpoint
is particularly suited for developing the localization theory of characteristic
classes; furthermore it allows us to understand and formulate clearly the
relations between Chern and Atiyah classes, because (see Section 1.3) we
may compare directly the differential forms representing Atiyah classes with
those representing Chern classes, whereas this would not be possible in gen-
eral at the level of classes because Chern classes and Atiyah classes live in
different cohomologies.

The use of (1, 0)-connections in this setting was already present in [4]
in the framework of principal bundles; and the idea of incorporating this
into the Chern-Weil theory had been noted in [5]. We bring these ideas to
fruition by combining them with the Čech-Dolbeault cohomology in order
to suitably localize Atiyah classes. We note that here the difference forms
play a key role. These tactics are analogues of those for Chern classes where
the Chern-Weil theory is combined with the Čech-de Rham cohomology
(originally due to D. Lehmann [16], see also [23]).

The plan of the paper is the following. In Section 1 we describe Atiyah
classes using connections of type (1, 0), as said above; the comparison with
the original definition is carried out in Section 2. In Section 3 we sum-
marize the Čech-Dolbeault cohomology theory, so that in Section 4 we can
express Atiyah classes in the Čech-Dolbeault cohomology and explain the
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basic principle of localization; a vanishing theorem always yields a corre-
sponding localization theorem with the associated residues. In Section 5
we briefly discuss the localization by sections, or more generally, by frames.
In Section 6 we prove our main theorem, a Bott type vanishing theorem
for non-singular distributions, the starting point for the residue theory of
singular distributions that we shall discuss in Section 8. As an important
example, we give the vanishing theorem coming from the Camacho-Sad ac-
tion in Section 7. Finally, in Section 9 we compute the Atiyah residues for
an example of singular distribution.

1 Atiyah classes

For details of the Chern-Weil theory of characteristic classes of complex
vector bundles, we refer to [6], [7], [21], [23]. Here we use the notation
in [23] (with connection and curvature matrices transposed and r and `
interchanged).

1.1 Atiyah forms

Let M be a complex manifold and E a holomorphic vector bundle over M
of rank `. For an open set U in M , we denote by Ap(U) the complex vector
space of complex valued C∞ p-forms on U . Also, we let Ap(U,E) be the
vector space of “E-valued p-forms” on U , i.e., C∞ sections of the bundle∧p (T c

RM)∗⊗E on U , where (T c
RM)∗ denotes the dual of the complexification

of the real tangent bundle TRM of M . Thus A0(U) is the ring of C∞

functions and A0(U,E) is the A0(U)-module of C∞ sections of E on U .

Definition 1.1 A (C∞) connection for E is a C-linear map

∇ : A0(M,E) −→ A1(M,E)

satisfying the Leibniz rule

∇(fs) = df ⊗ s + f∇(s) for f ∈ A0(M) and s ∈ A0(M,E).

Definition 1.2 For r = 1, . . . , `, an r-frame of E on an open set U is a col-
lection s(r) = (s1, . . . , sr) of r sections of E linearly independent everywhere
on U . An `-frame is simply called a frame.

Definition 1.3 Let ∇ be a connection for E on U , and s(r) = (s1, . . . , sr)
an r-frame of E. We say that ∇ is s(r)-trivial if ∇(si) = 0 for i = 1, . . . , r.
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A connection ∇ for E induces a C-linear map

∇ : A1(M,E) −→ A2(M,E)

satisfying

∇(ω ⊗ s) = dω ⊗ s − ω ∧∇(s) for ω ∈ A1(M) and s ∈ A0(M,E).

The composition

K = ∇ ◦∇ : A0(M,E) −→ A2(M,E)

is called the curvature of ∇. It is not difficult to see that K is A0(M)-linear;
hence it can be thought of as a C∞ 2-form with coefficients in the bundle
Hom(E,E).

Notice that a connection is a local operator, i.e., it is also defined on local
sections. This fact allows us to obtain local representations of a connection
and its curvature by matrices whose entries are differential forms. Thus
suppose that ∇ is a connection for E. If e(`) = (e1, . . . , e`) is a frame of E
on U , we may write, for i = 1, . . . , `,

∇(ei) =
∑̀
j=1

θj
i ⊗ ej with θj

i in A1(U).

The matrix θ = (θj
j) is the connection matrix of ∇ with respect to e(`). Also,

from the definition we get

K(ei) =
∑̀
j=1

κj
i ⊗ ej with κj

i = dθj
i +

∑̀
k=1

θj
k ∧ θk

i .

We call κ = (κj
i ) the curvature matrix of ∇ with respect to e(`). If ẽ(`) =

(ẽ1, . . . , ẽ`) is another frame of E on Ũ , we have ẽi =
∑`

j=1 aj
iej for suitable

functions aj
i ∈ C∞(U ∩ Ũ), and the matrix A = (aj

i ) is non-singular at
each point of U ∩ Ũ . If we denote by θ̃ and κ̃ the connection and curvature
matrices of ∇ with respect to ẽ(`) we have

θ̃ = A−1 · dA + A−1θA and κ̃ = A−1κA in U ∩ Ũ . (1.4)

Up to now E could have been only a C∞ complex vector bundle. Now
we use the assumption that E is holomorphic.

Definition 1.5 A connection ∇ for E is of type (1, 0) (or a (1, 0)-connection)
if the entries of the connection matrix with respect to a holomorphic frame
are forms of type (1, 0).
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Remark 1.6 (1) It is easy to check that the above property does not depend
on the choice of the holomorphic frame.

(2) A holomorphic vector bundle always admits a (1, 0)-connection. In fact
let V = {Vλ} be an open covering of M trivializing E. For each λ, let ∇λ

be the connection trivial with respect to some holomorphic frame on Vλ. If
we take a partition of unity {ρλ} subordinate to V and set ∇ =

∑
λ ρλ∇λ,

then ∇ is a (1, 0)-connection for E.

If ∇ is a (1, 0)-connection for E, we may write its curvature K as

K = K2,0 + K1,1

with K2,0 and K1,1, respectively, a (2, 0)-form and a (1, 1)-form with coeffi-
cients in Hom(E,E). Locally, if θ and κ are respectively the connection and
the curvature matrices of ∇ with respect to a (local) holomorphic frame of
E, then we can decompose κ = κ2,0 + κ1,1 according to type, and K2,0 and
K1,1 are respectively represented by

κ2,0 = ∂θ + θ ∧ θ and κ1,1 = ∂̄θ . (1.7)

Thus K1,1, being locally ∂̄-exact, is a ∂̄-closed (1, 1)-form with coefficients
in Hom(E,E).

With respect to another holomorphic frame, K1,1 is represented by a
matrix similar to κ1,1 (cf. (1.4)). Thus for each elementary symmetric
polynomial σp (with p = 1, 2, . . . ) we may define a ∂̄-closed C∞ (p, p)-form
σp(K

1,1) on M . Locally it is given by σp(κ
1,1), which is the coefficient of tp

in the expansion

det(I + tκ1,1) = 1 + σ1(κ
1,1)t + · · · + σp(κ

1,1)tp + · · · .

In particular, σ1(κ
1,1) = tr(κ1,1) and σ`(κ

1,1) = det(κ1,1).

Definition 1.8 Let ∇ be a (1, 0)-connection for a holomorphic vector bun-
dle E of rank `. For p = 1, . . . , `, we define the p-th Atiyah form ap(∇) of ∇
by

ap(∇) =

(√
−1

2π

)p

σp(K
1,1).

It is a ∂̄-closed (p, p)-form on M .
More generally, if ϕ is a symmetric homogeneous polynomial of degree

d, we may write ϕ = P (σ1, σ2, . . . ) for a suitable polynomial P . Then we
define the Atiyah form ϕA(∇) of ∇ associated to ϕ by

ϕA(∇) = P (a1(∇), a2(∇), . . .);

it is a ∂̄-closed (d, d)-form on M .
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Remark 1.9 The p-th Chern form cp(∇) of ∇ is defined by

cp(∇) =

(√
−1

2π

)p

σp(κ),

which is a closed (2p)-form having components of bidegrees (2p, 0), . . . , (p, p).
The Atiyah form ap(∇) is then the (p, p)-component of cp(∇). In particular,
an(∇) = cn(∇), where n denotes the dimension of M .

More generally, the Atiyah form ϕA(∇) of ∇ associated to a symmetric
homogeneous polynomial ϕ of degree d is the component of type (d, d) of the
Chern form ϕ(∇) = P (c1(∇), c2(∇), . . . ) associated to ϕ. Again, if d = n
then ϕA(∇) = ϕ(∇).

1.2 Atiyah classes

Let E be a holomorphic vector bundle over a complex manifold M . As in
the case of Chern forms, to any finite set of (1, 0)-connections for E one can
associate a difference form. Here we recall the construction given in [25,
Proposition 5.4].

Thus, given q + 1 (1, 0)-connections ∇0, . . . ,∇q for E, we consider the
vector bundle E × Rq → M × Rq and define the connection ∇̃ for it by
∇̃ = (1 −

∑q
i=1 ti)∇0 +

∑q
i=1 ti∇i, where (t1 . . . , tq) denote coordinates on

Rq. Denoting by ∆q the standard q-simplex in Rq and by π : M ×∆q → M
the projection, we have the integration along the fiber

π∗ : A2p(M × ∆q) −→ A2p−q(M).

Then we set
cp(∇0, . . . ,∇q) := π∗(c

p(∇̃)).

The Atiyah difference form ap(∇0, . . . ,∇q) is the (p, p− q)-component of
cp(∇0, . . . ,∇q). It is alternating in the q + 1 entries and satisfies

q∑
ν=0

ap(∇0, . . . , ∇̂ν , . . . ,∇q) + (−1)q∂̄ap(∇0, . . . ,∇q) = 0. (1.9)

In particular, if q = 1, we have

∂̄ap(∇0,∇1) = ap(∇1) − ap(∇0), (1.10)

which shows that, if ∇ is a (1, 0)-connection for E, the class of ap(∇) in
Hp,p

∂̄
(M) does not depend on the choice of ∇.

Similarly, if ϕ is a symmetric homogeneous polynomial of degree d, we
can define a (d, d − q)-form ϕA(∇0, . . . ,∇q) as the (d, d − q)-component of
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the Chern difference form ϕ(∇0, . . . ,∇q). It satisfies an identity analogous
to (1.9).

Then we can introduce the following definition :

Definition 1.11 Let E be a holomorphic vector bundle E of rank `. For
p = 1, . . . , ` the p-th Atiyah class ap(E) of E is the class represented by
ap(∇) in Hp,p

∂̄
(M), where ∇ is an arbitrary (1, 0)-connection for E.

Similarly, if ϕ is a symmetric homogeneous polynomial of degree d, the
Atiyah class ϕA(E) of E associated to ϕ is the class of ϕA(∇) in Hd,d

∂̄
(M),

where ∇ is an arbitrary (1, 0)-connection for E.

Remark 1.12 If n denotes the dimension of M , there is a canonical sur-
jective map Hn,n

∂̄
(M) −→ H2n

dR(M), the de Rham cohomology of M , which
assigns the class of a form ω to the class of ω. If d = n, then ϕA(∇) = ϕ(∇)
for any (1, 0)-connection ∇ for E and the image of ϕA(E) by the above map
is ϕ(E). In particular, if M is compact,

∫
M

ϕA(E) =
∫

M
ϕ(E).

Moreover, if d = n, then ϕA(∇0,∇1) also coincides with the usual Bott
difference form ϕ(∇0,∇1) for any pair of (1, 0)-connections ∇0, ∇1 for E.

1.3 Atiyah classes on compact Kähler manifolds

Let M be complex manifold (not necessarily Kähler) and E a holomorphic
vector bundle on M . Let h be any Hermitian metric on E and let ∇h be
the associated metric connection, i.e., ∇h is the unique (1, 0)-connection
compatible with h. The curvature K of ∇ is then of type (1, 1), and hence

cp(∇h) = ap(∇h) for all p ≥ 1.

In other words, Atiyah and Chern classes of the same degree can be rep-
resented by the same form. Of course, as classes they are different, be-
cause they belong to two different cohomology groups : cp(E) = [cp(∇h)] ∈
H2p

dR(M), while ap(E) = [ap(∇h)] ∈ Hp,p

∂̄
(M), the Dolbeault cohomology

of M .
However, if M is compact Kähler, the Hodge decomposition yields a

canonical injection Hp,p

∂̄
(M) ↪→ H2p

dR(M), and hence we obtain the following
useful relation :

Proposition 1.13 Let M be a compact Kähler manifold and E a holomor-
phic vector bundle on M . Let I : Hp,p

∂̄
(M) → H2p

dR(M) be the injection given
by the Hodge decomposition. Then

I
(
ap(E)

)
= cp(E) for all p ≥ 1.
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2 Atiyah classes via complex analytic con-

nections

Atiyah classes were originally introduced by Atiyah in [4], with a different
construction. In this section we show that our definition yields the same
classes.

Let M be a complex manifold and O the sheaf of germs of holomorphic
functions on M . For a holomorphic vector bundle E over M we denote by
E = O(E) the sheaf of germs of holomorphic sections of E. We also denote
by Θ = O(TM) and Ω1 = O(T ∗M) the sheaves of germs holomorphic vector
fields and of 1-forms on M . All tensor products in this section will be over
the sheaf O.

Definition 2.1 A holomorphic (or complex analytic) connection for E is a
homomorphism of sheaves of C-vector spaces

∇ : E −→ Ω1 ⊗ E

satisfying

∇(fs) = df ⊗ s + f∇(s) for f ∈ O and s ∈ E .

If e(r) = (e1, . . . , er) is a local holomorphic r-frame of E, we shall say
that ∇ is e(r)-trivial if ∇ej ≡ 0 for j = 1, . . . , r.

Remark 2.2 A holomorphic connection ∇ on a holomorphic vector bundle
E induces naturally a (1, 0)-connection ∇. In fact, let s be a C∞ section of
E. Let U be an open set trivializing E and let (e1, . . . , e`) be a holomorphic
frame on U . Write s =

∑`
i=1 f iei for suitable f i ∈ C∞(U), and set ∇s =∑`

i=1(df
i ⊗ ei + f i∇(ei)). It is easy to check that the definition does not

depend on the choice of the frame.
Conversely, a (1, 0)-connection ∇ such that (∇s)(u) is holomorphic wher-

ever s and u are holomorphic clearly determines a holomorphic connection.

Following Atiyah [4], we set

D(E) := E ⊕ (Ω1 ⊗ E),

which is a direct sum as a sheaf of C-vector spaces. It is endowed with the
O-module structure given by

f · (s, σ) = (fs, df ⊗ s + fσ).
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Then we have the following exact sequence of (locally free) O-modules :

0 −→ Ω1 ⊗ E ι−→ D(E)
ρ−→ E −→ 0. (2.3)

A splitting of this sequence is a morphism η : E → D(E) of O-modules
such that ρ ◦ η = id.

Lemma 2.4 ([4]) Let E be a holomorphic vector bundle on a complex man-
ifold M . A morphism η : E → D(E) is a splitting of (2.3) if and only if it is
of the form η(s) =

(
s, ∇(s)

)
, where ∇ is a holomorphic connection for E.

Thus E admits a holomorphic connection if and only if (2.3) splits.

The following is also easy to see :

Lemma 2.5 ([4]) Let ∇ be a holomorphic connection for a holomorphic
vector bundle E. If ξ ∈ HomO(E , Ω1 ⊗ E) then ∇ + ξ is a holomorphic
connection for E. Conversely, every holomorphic connection for E is of this
form.

The sequence (2.3) determines an element b(E) in the cohomology group
H1

(
M,Hom(E , Ω1 ⊗ E)

)
as follows. First, applying the functor Hom(E , ·)

to (2.3) we get the exact sequence

0 −→ Hom(E , Ω1 ⊗ E) −→ Hom
(
E , D(E)

)
−→ Hom(E , E) −→ 0,

and thus the connecting homomorphism

δ : H0
(
M,Hom(E , E)

)
−→ H1

(
M,Hom(E , Ω1 ⊗ E)

)
.

Then b(E) = δ(id) ∈ H1
(
M,Hom(E , Ω1 ⊗ E)

)
. It is not difficult to prove

the following

Lemma 2.6 ([4]) A holomorphic vector bundle E admits a holomorphic
connection if and only if b(E) = 0.

Now, we have the Dolbeault isomorphism

H1
(
M,Hom(E , Ω1⊗E)

)
= H1

(
M, Ω1⊗Hom(E , E)

)
' H1,1

∂̄

(
M, Hom(E,E)

)
.

Let a(E) denote the class in H1,1

∂̄

(
M, Hom(E,E)

)
corresponding to −b(E)

via the above isomorphism (cf. [4, Theorem 5]). Then the original Atiyah
class of type (p, p) is defined as

ap
or(E) =

(√
−1

2π

)p

σp(a(E));

we shall show that ap
or(E) = ap(E) for all p ≥ 1. To do so we need some

definitions.
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Definition 2.7 Let V = {Vλ} be an open covering of M . A V-splitting of
(2.3) is a collection {ηλ} of splittings ηλ of (2.3) on each Vλ. A holomorphic
V-connection for E is a collection {∇λ} of holomorphic connections ∇λ for
E|Vλ

.

By Lemma 2.4, a V-splitting determines a holomorphic V-connection
and vice versa. Furthermore, every holomorphic vector bundle E admits a
holomorphic V-connection for some open covering V . In fact, let V = {Vλ}
be a covering trivializing E; then take as ∇λ a holomorphic connection
which is trivial with respect to some holomorphic frame of E on Vλ.

Definition 2.8 We shall call ∂̄-curvature of E a ∂̄-closed (1, 1)-form with
coefficients in Hom(E,E) representing the class a(E).

The next theorem shows that we can obtain a ∂̄-curvature as the (1, 1)-
component of the curvature of a suitable (1, 0)-connection :

Theorem 2.9 Let E be a holomorphic vector bundle over a complex mani-
fold M . A holomorphic V-connection for E determines a (1, 0)-connection ∇
for E such that the (1, 1)-component of the curvature of ∇ is a ∂̄-curvature.

Proof : Let {∇λ} be a V-connection for E with respect to a (sufficiently
fine) open covering V = {Vλ} of M . On Vλ∩Vµ the difference ξλµ = ∇λ−∇µ

is an O-morphism from E to Ω1 ⊗ E , and the collection ξ = {ξλµ} is a 1-
cocycle on V representing −b(E).

We denote by Ap,q
(
Hom(E,E)

)
the sheaf of germs of smooth forms of

type (p, q) with coefficients in the bundle Hom(E,E); in particular, we may
think of Hom(E , Ω1⊗E) = Ω1⊗Hom(E , E) as a subsheaf of A1,0

(
Hom(E,E)

)
.

Since the sheaf Ap,q
(
Hom(E,E)

)
is fine, there exists a 0-cochain {τλ} of

A1,0
(
Hom(E,E)

)
on V such that

ξλµ = τµ − τλ on Vλ ∩ Vµ.

Hence
∇λ + τλ = ∇µ + τµ on Vλ ∩ Vµ.

In this way we have defined a global (1, 0)-connection ∇ which coincides
with ∇λ + τλ on Vλ.

Since the forms ξλµ are holomorphic, on Vλ ∩ Vµ we have ∂̄τλ = ∂̄τµ.
Hence we get a global ∂̄-closed (1, 1)-form ω with coefficients in Hom(E,E)
which is equal to ∂̄τλ on Vλ. By chasing the diagrams, it is easy to see that
the form ω represents the class a(E), and thus it is a ∂̄-curvature. Moreover,
(1.7) shows that ω is the (1, 1)-component of the curvature of ∇, and we are
done. 2
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Corollary 2.10 Let E be a holomorphic vector bundle on a complex mani-
fold M . Then

ap
or(E) = ap(E)

for all p ≥ 1.

Remark 2.11 Given a holomorphic V-connection {∇λ}, the ∂̄-curvature
ω constructed in the proof of Theorem 2.9 is not uniquely determined; it
depends on the choice of the 0-cochain {τλ}. One way to choose {τλ} is to
take a partition of unity {ρλ} subordinate to V and set τλ =

∑
ν ρνξ

νλ.

We give now a more explicit expression of the forms introduced in the
proof of Theorem 2.9. Let ` be the rank of E, and choose an open cover V
of sufficiently small open sets trivializing E. On each Vλ take a holomorphic
frame (eλ

1 , . . . , e
λ
` ) of E and let ∇λ be the connection on Vλ trivial with

respect to this frame. Finally, let {hλµ} be the system of transition matrices
corresponding to these choices, that is

eµ
j =

∑̀
k=1

(hλµ)k
j e

λ
k on Vλ ∩ Vµ.

Then

ξλµ(eλ
i ) = −

∑̀
j,k=1

(hλµ)j
k · d(hµλ)k

i ⊗ eλ
j .

Thus ξλµ is represented, with respect to the frame (eλ
1 , . . . , e

λ
` ), by the matrix

−hλµ · dhµλ = dhλµ · (hλµ)−1 = ∂hλµ · (hλµ)−1

as an element of Hom(E , Ω1 ⊗ E) ' Ω1 ⊗ Hom(E , E) on Vλ ∩ Vµ. Taking
a partition of unity {ρλ} subordinate to V , we may set τλ =

∑
ν ρνξ

νλ,
as in Remark 2.11; the global (1, 0)-connection constructed in the proof of
Theorem 2.9 is then given by ∇ =

∑
ν ρν∇ν , and its curvature matrix with

respect to the frame (eλ
1 , . . . , e

λ
` ) is given by τλ, and the corresponding ∂̄-

curvature by ∂̄τλ. As a direct consequence of Lemma 2.6 and Corollary 2.10
we get

Proposition 2.12 Let E be a holomorphic vector bundle over a complex
manifold M . If E admits a holomorphic connection then ap(E) = 0 for all
p ≥ 1, that is, all Atiyah classes of E vanish.

Remark 2.13 In fact, the existence of a holomorphic connection ∇ implies
the stronger vanishing ap(∇) = 0 for all p ≥ 1. This can be easily seen from
(1.7), since the connection matrix θ of ∇ with respect to a holomorphic
frame is holomorphic. See Theorem 6.10 below for more general vanishing
results of this type.
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It should be remarked that the converse of Proposition 2.12 is not true.
Namely, it might happen that ap(E) = 0 for all p ≥ 1 but a(E) 6= 0, as the
following example shows.

Example 2.14 Let M be a compact Riemann surface and L a line bundle
over M such that a1(L) = c1(L) 6= 0. Let E := L ⊕ L∗. Then c1(E) =
c1(L) − c1(L) = 0, and by Proposition 1.13 it follows a1(E) = 0. For
dimensional reasons, ap(E) = 0 for all p ≥ 2. Now we claim that E does
not admit a holomorphic connection, and hence a(E) 6= 0 as a class in
H1,1

∂̄

(
M, Hom(E,E)

)
. In fact, by contradiction, let ∇ denote a holomorphic

connection for E. Let π : Ω1 ⊗ E → Ω1 ⊗ L denote the projection and
ι : L → E the immersion. It is easy to show that π ◦ ∇ ◦ ι is a holomorphic
connection for L. But then c1(L) = a1(L) = 0, against our assumption.

3 Čech-Dolbeault cohomology

In this section, we recall the theory of Čech-Dolbeault cohomology in the
case of coverings consisting of two open sets. Although it is technically more
involved, the ideas are similar for the general case of coverings with arbitrary
number of open sets. We review relevant material for this case in Section 9
and refer to [25] for details

Let M be a complex manifold of dimension n. For an open set U of
M , we denote by Ap,q(U) the vector space of C∞ (p, q)-forms on U . Let
U = {U0, U1} be an open covering of M . We set U01 = U0 ∩ U1 and define
the vector space Ap,q(U) as

Ap,q(U) = Ap,q(U0) ⊕ Ap,q(U1) ⊕ Ap,q−1(U01).

Thus an element σ in Ap,q(U) is given by a triple σ = (σ0, σ1, σ01) with σi a
(p, q)-form on Ui, i = 0, 1, and σ01 a (p, q − 1)-form on U01.

We define a differential operator D̄ : Ap,q(U) → Ap,q+1(U) by

D̄σ = (∂̄σ0, ∂̄σ1, σ1 − σ0 − ∂̄σ01).

Then we have D̄ ◦ D̄ = 0 and thus a complex for each fixed p :

· · · −→ Ap,q−1(U)
D̄p,q−1

−→ Ap,q(U)
D̄p,q

−→ Ap,q+1(U) −→ · · · .

We set
Hp,q

D̄
(U) = Ker D̄p,q/Im D̄p,q−1

and call it the Čech-Dolbeault cohomology of U of type (p, q). We denote the
image of σ by the canonical surjection Ker D̄p,q → Hp,q

D̄
(U) by [σ].

Let Hp,q

∂̄
(M) denote the Dolbeault cohomology of M of type (p, q).

13



Theorem 3.1 The map α : Ap,q(M) → Ap,q(U) given by ω 7→ (ω, ω, 0) in-
duces an isomorphism

α : Hp,q

∂̄
(M)

∼−→ Hp,q

D̄
(U).

Proof : It is not difficult to show that α is well-defined. To prove that
α is surjective, let σ = (σ0, σ1, σ01) be such that D̄σ = 0. Let {ρ0, ρ1} be
a partition of unity subordinate to U and set ω = ρ0σ0 + ρ1σ1 − ∂̄ρ0 ∧ σ01.
Then it is easy to see that ∂̄ω = 0 and [(ω, ω, 0)] = [σ]. The injectivity of α
is also not difficult to show. 2

We define the cup product

Ap,q(U) × Ap′,q′(U) −→ Ap+p′,q+q′(U), (3.2)

assigning to σ in Ap,q(U) and τ in Ap′,q′(U) the element σ ` τ in Ap+p′,q+q′(U)
given by

(σ ` τ)0 = σ0 ∧ τ0, (σ ` τ)1 = σ1 ∧ τ1 and

(σ ` τ)01 = (−1)p+qσ0 ∧ τ01 + σ01 ∧ τ1.

Then σ ` τ is linear in σ and τ and we have

D̄(σ ` τ) = D̄σ ` τ + (−1)p+qσ ` D̄τ.

Thus it induces the cup product

Hp,q

D̄
(U) × Hp′,q′

D̄
(U) −→ Hp+p′,q+q′

D̄
(U)

compatible, via the isomorphism of Theorem 3.1, with the product in the
Dolbeault cohomology induced from the exterior product of forms.

Now we recall the integration on the Čech-Dolbeault cohomology. Let
M and U = {U0, U1} be as above and {R0, R1} a system of honey-comb cells
adapted to U (cf. [16], [23]). Thus each Ri, i = 0, 1, is a real submanifold
of dimension 2n with C∞ boundary in M such that Ri ⊂ Ui, M = R0 ∪ R1

and that Int R0 ∩ Int R1 = ∅. We set R01 = R0 ∩ R1, which is equal to
∂R0 = −∂R1 as an oriented manifold.

Suppose M is compact; then each Ri is compact and we may define the
integration ∫

M

: An,n(U) −→ C

as the sum ∫
M

σ =

∫
R0

σ0 +

∫
R1

σ1 +

∫
R01

σ01

14



for σ in An,n(U). Then this induces the integration on the cohomology∫
M

: Hn,n

D̄
(U) −→ C,

which is compatible, via the isomorphism of Theorem 3.1, with the usual
integration on the Dolbeault cohomology Hn,n

∂̄
(M). Also the bilinear pairing

Ap,q(U) × An−p,n−q(U) −→ An,n(U) −→ C

defined as the composition of the cup product and the integration induces
the Kodaira-Serre duality

KS : Hp,q

∂̄
(M) ' Hp,q

D̄
(U)

∼−→ Hn−p,n−q

D̄
(U)∗ ' Hn−p,n−q

∂̄
(M)∗. (3.3)

Now let S be a closed set in M . Let U0 = M rS and U1 a neighborhood
of S in M , and consider the covering U = {U0, U1} of M . We denote by
Ap,q(U , U0) the subspace of Ap,q(U) consisting of elements σ with σ0 = 0, so
that we have the exact sequence

0 −→ Ap,q(U , U0) −→ Ap,q(U) −→ Ap,q(U0) −→ 0.

We see that the operator D̄ maps Ap,q(U , U0) into Ap,q+1(U , U0). Denot-
ing by Hp,q

D̄
(U , U0) the q-th cohomology of the complex (Ap,∗(U , U0), D̄), we

have the long exact sequence

· · · → Hp,q−1

∂̄
(U0) → Hp,q

D̄
(U , U0) → Hp,q

D̄
(U) → Hp,q

∂̄
(U0) → · · · . (3.4)

In view of the fact that Hp,q

D̄
(U) ' Hp,q

∂̄
(M), we set

Hp,q

∂̄
(M,M r S) := Hp,q

D̄
(U , U0).

Suppose S is compact (M may not be) and let {R0, R1} be a system of
honey-comb cells adapted to U . Then we may assume that R1 is compact
and we have the integration on An,n(U , U0) given by∫

M

σ =

∫
R1

σ1 +

∫
R01

σ01.

This again induces the integration on the cohomology∫
M

: Hn,n

D̄
(U , U0) −→ C.
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The cup product (3.2) induces a pairing

Ap,q(U , U0) × An−p,n−q(U1) −→ An,n(U , U0),

which, followed by the integration, gives a bilinear pairing

Ap,q(U , U0) × An−p,n−q(U1) −→ C.

This induces a homomorphism

Ā : Hp,q

∂̄
(M,M r S) = Hp,q

D̄
(U , U0) −→ Hn−p,n−q

∂̄
(U1)

∗, (3.5)

which we call the ∂̄-Alexander homomorphism. Note that, although the
cohomology Hp,q

∂̄
(M,M r S) does not depend on the choice of U1 because

of the exact sequence (3.4), Hn−p,n−q

∂̄
(U1)

∗ does depend on the choice of U1.
From the above construction, we have the following

Proposition 3.6 If M is compact, the following diagram is commutative :

Hp,q

∂̄
(M,M r S)

j∗−−−→ Hp,q

∂̄
(M)

Ā

y o
yKS

Hn−p,n−q

∂̄
(U1)

∗ i∗−−−→ Hn−p,n−q

∂̄
(M)∗.

4 Localization of Atiyah classes

In this section we describe a general scheme for dealing with localization
problems.

4.1 Atiyah classes in the Čech-Dolbeault cohomology

Let M be a complex manifold and U = {U0, U1} an open covering of M
consisting of two open sets, so that

Ap,p(U) = Ap,p(U0) ⊕ Ap,p(U1) ⊕ Ap,p−1(U01).

For i = 0, 1, let ∇i be a (1, 0)-connection for E on Ui. Then the cochain

ap(∇∗) =
(
ap(∇0), a

p(∇1), a
p(∇0,∇1)

)
is in fact a cocycle, because of (1.10), and thus defines a class [ap(∇∗)] in
Hp,p

D̄
(U).
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As in the case of Chern classes, it is not difficult to show that the class
[ap(∇∗)] does not depend on the choice of the connections ∇i and corre-
sponds to the Atiyah class ap(E) via the isomorphism of Theorem 3.1 (cf.
[23, Ch.II, 8. D]).

Similarly, if ϕ is a symmetric homogeneous polynomial of degree d, the
cocycle

ϕA(∇∗) =
(
ϕA(∇0), ϕ

A(∇1), ϕ
A(∇0,∇1)

)
(4.1)

defines a class in Hd,d

D̄
(U), which corresponds to the class ϕA(E) via the

isomorphism of Theorem 3.1.

4.2 Localization principle

Let M be a complex manifold of dimension n and E a holomorphic vector
bundle of rank ` over M . Also, let S be a closed set in M and U1 a neigh-
borhood of S. Setting U0 = M r S, we consider the covering U = {U0, U1}
of M . Recall that for a homogeneous symmetric polynomial ϕ of degree d,
the characteristic class ϕA(E) in Hd,d

D̄
(U) ' Hd,d

∂̄
(M) is represented by the

cocycle ϕA(∇∗) in Ad,d(U) given by (4.1).
It often happens (see, e.g., Remark 2.13, Theorems 5.1 and 6.10 below, or

[2, 3]) that the existence of a geometric object γ on U0 implies the vanishing
of ϕ(E|U0) or of ϕA(E|U0), or even of the forms representing them, for some
symmetric homogeneous polynomial ϕ. In this section we shall show that
in this case we can localize the class ϕA(E) at S.

To formalize this idea, assume that given a symmetric homogeneous poly-
nomial ϕ we can associate to γ a class C of (1, 0)-connections for E|U0 such
that

ϕA(∇) ≡ 0

for all ∇ ∈ C. We shall also assume (see, e.g., Theorem 6.10) that

ϕA(∇0,∇1) ≡ 0

for all pairs ∇0, ∇1 ∈ C. In this case we shall say that ϕ is adapted to γ,
and we shall call any connection in C special.

Assume that ∇0 is special and ϕ is adapted to γ. The cocycle ϕA(∇∗)
is then in Ad,d(U , U0) and thus it defines a class in Hd,d

∂̄
(M,M r S), which

is denoted by ϕA
S (E, γ). It is sent to the class ϕA(E) by the canonical

homomorphism j∗ : Hd,d

∂̄
(M,MrS) → Hd,d

∂̄
(M). It is not difficult to see that

the class ϕA
S (E, γ) does not depend on the choice of the special connection

∇0 or of the connection ∇1 (cf. [23, Ch.III, Lemma 3.1]). We call ϕA
S (E, γ)

the localization of ϕA(E) at S by γ.
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Suppose now S is compact. Then we have the ∂̄-Alexander homomor-
phism (3.5)

Ā : Hd,d

∂̄
(M,M r S) −→ Hn−d,n−d

∂̄
(U1)

∗.

Thus the class ϕA
S (E, γ) defines a class in Hn−d,n−d

∂̄
(U1)

∗, which we call the
residue of γ for the class ϕA(E) on U1, and denote by ResϕA(γ,E; U1).

Suppose moreover that S has a finite number of connected components
{Sλ}λ. For each λ, we choose a neighborhood Uλ of Sλ so that Uλ∩Uµ = ∅ if

λ 6= µ. Then we have the residue ResϕA(γ,E; Uλ) in Hn−d,n−d

∂̄
(Uλ)

∗ for each
λ. Let Rλ be a 2n-dimensional manifold with C∞ boundary in Uλ containing
Sλ in its interior and set R0λ = −∂Rλ. Then the residue ResϕA(γ,E; Uλ) is
represented by a functional

η 7→
∫

Rλ

ϕA(∇1) ∧ η +

∫
R0λ

ϕA(∇0,∇1) ∧ η (4.2)

for every ∂̄-closed (n − d, n − d)-form η on Uλ.
From the above considerations and Proposition 3.6, we have the following

residue theorem :

Theorem 4.3 Let E be a holomorphic vector bundle on a complex manifold
M of dimension n. Let S be a compact subset of M with a finite number
of connected components {Sλ}λ. Assume we have a geometric object γ on
U0 = MrS and a symmetric homogeneous polynomial ϕ of degree d, adapted
to γ. For each λ choose a neighbourhood Uλ of Sλ so that Uλ ∩Uµ = ∅ when
λ 6= µ. Then :

(1) For each connected component Sλ the residue ResϕA(γ,E; Uλ) in the

dual space Hn−d,n−d

∂̄
(Uλ)

∗ is represented by the functional (4.2);

(2) if moreover M is compact, then∑
λ

(iλ)∗ResϕA(γ,E; Uλ) = KS(ϕA(E)) in Hn−d,n−d

∂̄
(M)∗,

where iλ : Uλ ↪→ M denotes the inclusion.

Remark 4.4 If d = n and M if is compact and connected, Hn−d,n−d

∂̄
(M)∗ =

H0,0

∂̄
(M)∗ may be identified with C, and in this case, (iλ)∗ResϕA(γ,E; Uλ) is

a complex number given by∫
Rλ

ϕA(∇1) +

∫
R0λ

ϕA(∇0,∇1),

and KS(ϕA(E)) may be expressed as
∫

M
ϕA(E).

Furthermore, in this case H0,0

∂̄
(M)∗ = H0(M, C), and ϕA may be replaced

by ϕ (cf. Remark 1.12) so that the Atiyah residue equals the Chern residue.
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We finish this section by studying what happens in the case of compact
Kähler manifolds. Thus let M be a compact Kähler manifold of dimension n,
and E a holomorphic vector bundle on M . We have the following commuting
diagram :

Hp,p

∂̄
(M)

I−−−→ H2p
dR(M)

KS

yo o
yP

Hn−p,n−p

∂̄
(M)∗

I∗−−−→ H2n−2p(M, C).

where I denotes the injection given by the Hodge decomposition, I∗ the
injection given by the dual decomposition, and P the Poincaré isomorphism,
which is given by the cap product with the fundamental cycle [M ].

Since I(ϕA(E)) = ϕ(E) in this case (Proposition 1.13), applying I∗ to the
both sides of the formula in Theorem 4.3.(2), we actually have a localization
result for Chern classes :

Theorem 4.5 Let E be a holomorphic vector bundle on a compact Kähler
manifold M of dimension n. Let S be a compact subset of M with a finite
number of connected components {Sλ}λ. Assume we have a geometric object
γ on U0 = M r S and a symmetric homogeneous polynomial ϕ of degree d,
adapted to γ. For each λ choose a neighbourhood Uλ of Sλ so that Uλ∩Uµ = ∅
when λ 6= µ. Then∑

λ

I∗
(
(iλ)∗ResϕA(γ,E; Uλ)

)
= ϕ(E) _ [M ] in H2n−2d(M, C).

Notice that I∗
(
(iλ)∗ResϕA(γ,E; Uλ)

)
is represented by a cycle C such

that for each closed (2n−2d)-form ω, the integral
∫

C
ω is given by the right-

hand side of (4.2) with η a ∂̄-closed (n − d, n − d)-form representing the
(n − d, n − d)-component of the class [ω] ∈ H2n−2d

dR (M).

5 Localization by frames

In this section we give a first example of localization of Atiyah classes fol-
lowing the scheme indicated in the previous section.

The starting point is the following vanishing theorem, which is a con-
sequence of the corresponding vanishing theorem for Chern forms (cf., e.g.,
[23, Ch.II, Proposition 9.1]).

Theorem 5.1 Let E be a holomorphic vector bundle of rank ` on a complex
manifold M . Let s(r) = (s1, . . . , sr) be an r-frame of E on an open set
U ⊂ M , and ∇ an s(r)-trivial (1, 0)-connections for E on U . Then

ap(∇) = 0, on U for p ≥ ` − r + 1.
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Let S be a closed set in M and assume we have an r-frame s(r) of E on
M r S. We let U0 = M r S, choose a neighborhood U1 of S, and consider
the covering U = {U0, U1} of M . Let ∇0 be an s(r)-trivial (1, 0)-connection
for E on U0, and ∇1 an arbitrary (1, 0)-connection for E on U1. The p-th
Atiyah class ap(E) is represented by the Čech-Dolbeault cocycle

ap(∇∗) =
(
ap(∇0), a

p(∇1), a
p(∇0,∇1)

)
.

By Theorem 5.1, if p ≥ ` − r + 1, we have ap(∇0) = 0; thus ap(∇∗) ∈
Ap,p(U , U0) determines a class in Hp,p

∂̄
(M,M r S), which we denote by

ap(E, s(r)) and call the localization of ap(E) by s(r).

Remark 5.2 If we have several s(r)-trivial (1, 0)-connections, we also have
the vanishing of their difference form, and so s(r)-trivial (1, 0)-connections
are special in the sense discussed in the previous section. As a consequence,
the localization ap(E, s(r)) does not depend on the choice of the s(r)-trivial
(1, 0)-connection ∇0 (or of the (1, 0)-connection ∇1); cf. [23].

Example 5.3 Let C be a compact Riemann surface and L a holomorphic
line bundle over C. Suppose we have a meromorphic section s of L and
let S be the set of zeros and poles of s. The previous construction gives
us the localization a1(L, s) in H1,1

∂̄
(C,C r S) of a1(L) in H1,1

∂̄
(C). Note

that S consists of a finite number of points. Let p be a point in S and
choose an open neighborhood U of p not containing any other point in S
and trivializing L. Let e be a holomorphic frame of L on U , and write s = fe
with f a meromorphic function on U . Let ∇0 be the s-trivial connection for
L on C r S and ∇1 the e-trivial connection for L on U . If we denote by i
the embedding U ↪→ C, we have (by Theorem 4.3 and Remark 4.4)

i∗Resa1(L, s; U) =

∫
R

a1(∇1) −
∫

∂R

a1(∇0,∇1).

But we also have a1(∇1) = 0, and a computation gives

a1(∇0,∇1) =

√
−1

2π

df

f
.

So

i∗Resa1(L, s; U) =
1

2π
√
−1

Resp

(
df

f

)
,

and Theorem 4.5 yields∑
p∈S

1

2π
√
−1

Resp

(
df

f

)
=

∫
C

a1(L).

In particular we have recovered the classical residue formula for the Chern
class, as

∫
C

c1(L) =
∫

C
a1(L) in this case.
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See [25] for another fundamental example of localized classes of this type,
i.e., the “∂̄-Thom class” of a holomorphic vector bundle.

6 A Bott type vanishing theorem

Let M be a complex manifold and E a complex vector bundle over M . If H
is a subbundle of the complexified tangent bundle T c

RM , then its dual H∗ is
canonically viewed as a quotient of (T c

RM)∗. We denote by ρ the canonical
projection (T c

RM)∗ → H∗. Following [6], we give the following definition.

Definition 6.1 A partial connection for E is a pair (H, δ) given by a sub-
bundle H of T c

RM and a C-linear map

δ : A0(M,E) −→ A0(M,H∗ ⊗ E)

satisfying

δ(fs) = ρ(df) ⊗ s + fδ(s) for f ∈ A0(M) and s ∈ A0(M,E).

As in the case of connections, it is easy to show that a partial connection
is a local operator and thus it admits locally a representation by a matrix
whose entries are C∞ sections of H∗.

Definition 6.2 Let (H, δ) be a partial connection for E. We say that a
connection ∇ for E extends (H, δ) if the diagram

A0(M,E)
∇−−−→ A1(M,E) = A0(M, (T c

RM)∗ ⊗ E)

id

y ρ⊗1

y
A0(M,E)

δ−−−→ A0(M,H∗ ⊗ E)

is commutative.

It is easy to see that the following lemma holds ([6, Lemma (2.5)]).

Lemma 6.3 Any partial connection for a complex vector bundle admits an
extension.

Example 6.4 If E is holomorphic, then we have the differential operator

∂̄ : A0(M,E) −→ A0(M, T
∗
M ⊗ E).

The pair (TM, ∂̄) is a partial connection for E.
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The following is not difficult to prove :

Lemma 6.5 ([6]) A connection ∇ for a holomorphic vector bundle E is of
type (1, 0) if and only if it extends (TM, ∂̄).

Definition 6.6 Let E be a holomorphic vector bundle over M . A holomor-
phic partial connection for E is a pair (F, δ) given by holomorphic subbundle
F of TM and a C-linear homomorphism

δ : E −→ F∗ ⊗ E

satisfying

δ(fs) = ρ(df) ⊗ s + fδ(s) for f ∈ O and s ∈ E .

We shall also say that δ is a holomorphic partial connection along F .

Remark 6.7 A holomorphic partial connection (F, δ) for a holomorphic
vector bundle E induces a partial connection in the sense of Definition 6.1
(cf. Remark 2.2). Conversely, if (F, δ) is a (C∞) partial connection such that
δ(s)(u) is holomorphic wherever s and u are holomorphic, then it defines a
holomorphic partial connection, and we shall say that (F, δ) is holomorphic.

Note that, if there is an “action” of F on E, it naturally defines a partial
connection for E along F (cf. [23, Ch.II, 9]).

Remark 6.8 A holomorphic connection ∇ on E clearly gives a holomorphic
partial connection (TM, ∇). The connection ∇ in Remark 2.2 (that is, ∇
viewed as a C∞ connection) is a connection extending (TM ⊕ TM, ∇⊕ ∂̄).

Definition 6.9 Let (F, δ) be a partial holomorphic connection for E. An
F -connection for E is a connection for E extending (F ⊕ T̄M, δ ⊕ ∂̄).

Using holomorphic partial connections we have a vanishing theorem gen-
eralizing Proposition 2.12 :

Theorem 6.10 Let M be a complex manifold of dimension n and F a holo-
morphic subbundle of rank r of TM , r ≤ n. Let E be a holomorphic vec-
tor bundle over M and (F, δ) a holomorphic partial connection for E. If
∇0, . . . ,∇q are F -connections for E, then

ϕA(∇0, . . . ,∇q) ≡ 0

for all homogeneous symmetric polynomials ϕ of degree d > n − r.
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Proof : For simplicity, we prove the theorem for the case q = 0. The
case for general q follows from the construction of the difference form (cf.
Subsection 1.2).

Thus let ∇ be an F -connection for E. Note that the problem is local; so
choose a holomorphic frame s(`) = (s1, . . . , s`) of E on some open set U , and
let θ be the connection matrix of ∇ with respect to s(`). Taking a smaller
U , if necessary, we may write TM = F ⊕ G for some holomorphic vector
bundle G of rank n − r on U . We have the corresponding decomposition
T ∗M = F ∗ ⊕ G∗. Taking, again if necessary, a smaller U , we can choose
a holomorphic frame u(r) = (u1, . . . , ur) of F on U . Let (u∗

1, . . . , u
∗
r) be

the holomorphic frame of F ∗ dual to u(r) and (v∗
1, . . . , v

∗
n−r) a holomorphic

frame of G∗ on U . Since ∇ is of type (1, 0), each entry of θ may be written
as

∑r
j=1 aju∗

j +
∑n−r

k=1 bkv∗
k with aj, bk ∈ C∞(U). By definition, we have

∇(si)(uj) = δ(si)(uj), which is holomorphic. Thus each aj is holomorphic
and hence the corresponding entry of κ1,1 = ∂̄θ is of the form

n−r∑
k=1

∂̄bk ∧ v∗
k,

which yields the theorem. 2

Another proof of the same theorem can be given along the lines of the
original Bott vanishing theorem and of [3, Theorem 6.1] :

Proof : [Second proof of Theorem 6.10] Let ∇ and TM = F ⊕ G be
chosen as in the previous proof. The curvature K of ∇ satisfies

K(X, Z) = 0

for all sections X of F and Z of TM . Hence, if

{u∗
1, . . . , u

∗
r, v

∗
1, . . . , v

∗
n−r, dz̄1, . . . , dz̄n}

is a basis of (T c
RM)∗ with respect to the decomposition T c

RM = F ⊕G⊕ T̄M ,
it follows that the (1, 1)-part of each entry of the curvature matrix of K in
such a frame is of the form

n−r∑
j=1

n∑
k=1

aj
kv

∗
j ∧ dz̄k,

and again the assertion follows. 2

Remark 6.11 The previous vanishing theorem is an analogue of the Bott
vanishing theorem for Chern forms. As shown in [3, Theorem 6.1], under
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the same hypotheses we have ϕ(∇) = 0 for a symmetric homogeneous poly-
nomial ϕ of degree d > n − r + [ r

2
], where [q] denotes the integer part of q.

See Section 9, Remark 9.7 below for an example where the Atiyah form
vanishes but the corresponding Chern form does not.

Remark 6.12 A version of this Bott type vanishing theorem for Atiyah
classes is proved in [5, Proposition (3.3)] and [13, Proposition 5.1] by co-
homological arguments (actually, in the latter the authors assume F to be
involutive, but involutiveness is not really needed in their argument). The
above theorem gives a more precise form of the vanishing theorem in the
sense that it gives the vanishing at the form level.

From Theorem 6.10, Remark 6.11 and Propositions 1.13 and 2.12, we
have

Theorem 6.13 Let E be a holomorphic vector bundle on a complex mani-
fold M . Assume that E admits a holomorphic connection ∇, and let ∇ be
correspoonding (1, 0)-connection (cf. Remark 6.8). Let ϕ be a a symmet-
ric homogeneous polynomial of degree d > 0. Then ϕA(∇) = 0. Moreover
if d > [n

2
], then ϕ(∇) = 0. Furthermore, if M is compact Kähler then

ϕ(E) = 0.

7 Partial connection for the normal bundle

of an invariant submanifold

Let M be a complex manifold. A (non-singular holomorphic) distribution
on M is a holomorphic subbundle F of TM . The rank of the distribution
is the rank of F . In this section, we construct a partial connection for the
normal bundle of an invariant submanifold of a distribution.

Let V be a complex submanifold of M . We denote by IV ⊂ O the ideal
sheaf of holomorphic function germs vanishing on V so that OV = O/IV

is the sheaf of germs of holomorphic functions on V . Denoting by NV the
normal bundle of V in M , we have the exact sequence

0 −→ TV −→ TM |V
π−→ NV −→ 0.

We say that a distribution F on M leaves V invariant (or F is tangent
to V ), if F |V ⊂ TV .

Theorem 7.1 Let V be a complex submanifold of M . If a distribution F
on M leaves V invariant, there exists a holomorphic partial connection δ
for the normal bundle NV along F |V .
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Proof : Let x be a point in V and take u ∈ OV (F |V )x and s ∈
OV (NV )x. Let ũ ∈ Fx and s̃ ∈ Θx such that ũ|V = u and π(s̃|V ) = s, where
π : OV (TM |V ) → OV (NV ) is the natural projection. Define δ : OV (NV ) →
OV (F |V )∗ ⊗OV (NV ) by

δ(s)(u) := π([ũ, s̃]|V ).

It is easy to show that δ does not depend on the choice of s̃. As for ũ,
let F be locally generated by holomorphic sections ṽ1, . . . , ṽr of TM , where
r = rank F . Choose local coordinates {z1, . . . , zn} on M such that V =
{zm+1 = . . . = zn = 0}. We shall denote by Tk any local vector field of
the form

∑m
j=1 aj ∂

∂zj
with aj ∈ Ik

V (where clearly I0
V = O); by Nk any local

vector field of the form
∑n

j=m+1 aj ∂
∂zj

with aj ∈ Ik
V ; and by Rk any local

vector field of the form
∑n

j=1 aj ∂
∂zj

with aj ∈ Ik
V .

Since F |V ⊂ TV , it follows that ṽj = T0 + N1 + R2 for j = 1, . . . , r.
Therefore, since the rank of F and the rank of F |V are the same, if

u =
r∑

j=1

gj ṽj|V

with gj ∈ OV , then

ũ =
r∑

j=1

g̃j ṽj

with g̃j ∈ O such that g̃j|V = gj. Denoting by gj the natural extension
(z1, . . . , zn) 7→ gj(zm+1, . . . , zn), it follows that

g̃j − gj = hj ∈ IV .

Hence

ũ =
r∑

j=1

gj ṽj +
r∑

j=1

hj ṽj

But
hj ṽj = hj(T0 + N1 + R2) = T1 + R2,

and it is easy to see that this latter term does not give any contribution to
the expression π([ũ, s̃]|V ). From this it follows that δ is well defined, and it
is easy to check that it is a holomorphic partial connection. 2

Note that the above partial connection is already known for foliations
(cf. e.g., [18]). From Theorems 7.1 and 6.10, we have
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Corollary 7.2 Let V be a complex submanifold of M of dimension m and
F a distribution on M of rank r leaving V invariant, r ≤ m. Also let ∇
be a (1, 0)-connection for NV extending the partial connection δ of Theorem
7.1. Then ϕA(∇) = 0 for all symmetric homogeneous polynomial ϕ of degree
d > m − r.

We also get the following obstruction to the existence of distributions
(not necessarily integrable) tangent to a given submanifold :

Corollary 7.3 Let V and F be as in Corollary 7.2. Then ϕA(NV ) = 0 for
all symmetric homogeneous polynomial ϕ of degree d > m − r.

Moreover, if V is compact Kähler then we have ϕ(NV ) = 0 for all sym-
metric homogeneous polynomial ϕ of degree d > m − r.

8 Residues of singular distributions

A general theory of singular holomorphic distributions can be developed
modifying the one for singular holomorphic foliations (cf. [6], [23, Ch.VI]),
omitting the integrability condition.

Let M be a complex manifold of dimension n. For simplicity, we assume
that M is connected.

Definition 8.1 A (singular) holomorphic distribution of rank r on M is a
coherent sub-OM -module F of rank r of Θ.

In the above, the rank of F is the rank of its locally free part. Note
that, since Θ is locally free, the coherence of F here simply means that it
is locally finitely generated. We call F the tangent sheaf of the distribution
and the quotient NF = Θ/F the normal sheaf of the distribution.

The singular set S(F) of a distribution F is defined to be the singular
set of the coherent sheaf NF :

S(F) = Sing(NF) = {x ∈ M | NFx is not Ox-free }.

Note that Sing(F) ⊂ S(F). Away from S(F), the sheaf F defines a
non-singular distribution of rank r.

In particular, if F is locally free of rank r, in a neighborhood of each
point in M it is generated by r holomorphic vector fields v1, . . . , vr, without
relations, on U . The set S(F)∩U is the set of points where the vector fields
fail to be linearly independent.
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Singular distributions can be dually defined in terms of cotangent sheaf.
Thus a singular distribution of corank q is a coherent subsheaf G of rank q
of Ω1. Its annihilator

F = Ga = { v ∈ Θ | 〈v, ω〉 = 0 for all ω ∈ G }

is a singular distribution of rank r = n − q.
Corollary 7.3 in the previous section has a slightly stronger version when

the rank of the distribution is equal to the dimension of the submanifold.
Namely

Proposition 8.2 Let V ⊂ M be a complex submanifold of dimension m.
Let F be a (possibly singular) holomorphic distribution of rank m. Assume
that F ⊗OV ⊂ OV (TV ) and that Σ = S(F) ∩ V is an analytic subset of V
of codimension at least 2. Then ap(NV ) = 0 for all p > 0.

Moreover, if V is compact Kähler then cp(NV ) = 0 for all p > 0.

Proof : We shall show that there exists a holomorphic connection for
NV , then the result follows from Theorem 6.13.

By Theorem 7.1 there exists a holomorphic connection ∇ for NV on
V rΣ. We are going to prove that such a connection extends holomorphically
through Σ. Indeed, let p ∈ Σ. Let U be an open neighborhood of p in V such
that NV |U is trivial. Let e1, . . . , ek be a holomorphic frame for NV |U (here
k = dim M − m). Let ω be the connection matrix of ∇ on U r Σ. With
respect to local coordinates (z1, . . . , zm) on U , the entries of ω are (1, 0)-
forms of the type

∑
j aj(z)dzj with aj : U r Σ → C holomorphic. Since Σ

has codimension at least two in U , Riemann’s extension theorem implies
that each aj admits a (unique) holomorphic extension to U . In this way we
have extended ∇ over U , and hence NV admits a holomorphic connection.

2

Now suppose F is a singular distribution of rank r and set U0 = M r S
and S = S(F). Let U1 be a neighborhood of S in M and consider the
covering U = {U0, U1}. On U0, we have a subbundle F0 of TM such that
F|U0 = O(F0).

Suppose E is a holomorphic vector bundle on M admitting a partial holo-
morphic connection (F0, δ) on U0. Then, choosing an F0-connection ∇0 on
U0 and a (1, 0)-connection ∇1 on U1, for a symmetric homogeneous polyno-
mial ϕ of degree d > n−r, we have the localization ϕA(E,F) in Hd,d

D̄
(U , U0)

of ϕA(E) in Hd,d

D̄
(U) ' Hd,d

∂̄
(M) and, via the ∂̄-Alexander homomorphism,

the corresponding residues.
We restate the residue theorem (Theorem 4.3) in this context :

27



Theorem 8.3 In the above situation, suppose S has a finite number of con-
nected components {Sλ}λ. Then :

(1) For each λ we have the residue ResϕA(F , E; Uλ) in Hn−d,n−d

∂̄
(Uλ)

∗;

(2) if M is compact, then∑
λ

(iλ)∗ResϕA(F , E; Uλ) = KS(ϕA(E)) in Hn−d,n−d

∂̄
(M)∗.

9 An example

In this section, we give an example of the Atiyah residue of a singular dis-
tribution on the normal bundle of an invariant submanifold.

We start with the 1-form

ω = z dx + z dy − y dz

on C3 with coordinates (x, y, z). It defines a corank one singular distribution
on C3 with singular set {y = z = 0}. As generators of its annihilator, we
may take the vector fields

v1 = y
∂

∂y
+ z

∂

∂z
and v2 =

∂

∂x
− ∂

∂y
. (9.1)

The distribution defined by ω leaves the plane {z = 0} invariant. Note
that from ω∧dω = −z dx∧dy∧dz, we see that ω defines a contact structure
on C3 with singular set {z = 0} (Martinet hypersurface). We will see that
the first Atiyah class of the normal bundle of the (projectivized) Martinet
hypersurface is localized at the singular set of the corresponding distribution.

Now we projectivize everything. Thus let P3 be the complex projective
space of dimension three with homogeneous coordinates ζ = (ζ0 : ζ1 : ζ2 : ζ3).
The projective space P3 is covered by four open sets W (i), 0 ≤ i ≤ 3, given
by ζi 6= 0. We take the original affine space C3 as W (0) with x = ζ1/ζ0,
y = ζ2/ζ0 and z = ζ3/ζ0.

We consider the corank one distribution G on P3 naturally obtained as
an extension of the above :

(0) On W (0), G is defined by ω0 = z dx + z dy − y dz as given before.

(1) On W (1), we set x1 = ζ0/ζ1, y1 = ζ3/ζ1 and z1 = ζ2/ζ1. Then G is defined
by

ω1 = −y1 dx1 − x1z1 dy1 + x1y1 dz1.
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(2) On W (2), we set x2 = ζ3/ζ2, y2 = ζ0/ζ2 and z2 = ζ1/ζ2. Then G is defined
by

ω2 = −y2 dx2 − x2z2 dy2 + x2y2 dz2.

(3) On W (3), we set x3 = ζ2/ζ3, y3 = ζ1/ζ3 and z3 = ζ0/ζ3. Then G is defined
by

ω3 = z3 dx3 + z3 dy3 − y3 dz3.

Note that ωi = (ζj/ζi)
3ωj in W (i) ∩ W (j) so that the conormal sheaf of

the distribution G is locally free of rank one and, as a line bundle, it is −3
times the hyperplane bundle on P3. Let F = Ga be the annihilator of G,
which defines a singular distribution of rank two on P3. The singular set
S(F) of F , which coincides with that of G, has three irreducible components
S1 = {ζ2 = ζ3 = 0}, S2 = {ζ0 = ζ3 = 0} and S3 = {ζ0 = ζ1 = 0}. We have a
subbundle F0 of rank 2 of TP3 on P3 r S(F) defining F away from S(F).

The distribution F leaves the hyperplane V = {ζ3 = 0} ' P2 invariant
and we work on V . In fact the distribution F also leaves the singular hy-
persurface {ζ0ζ3 = 0}, which contains the whole S(F), invariant. This case
is treated in [26].

Thus we consider the singular distribution FV = F ⊗ OV on V , whose
singular set S is given by S = S(F)∩V = S1∪S2. We let P = (0 : 1 : 0 : 0),
which is the intersection point of S1 and S2. The restriction of the bundle
FV,0 = F0|V defines FV on U0 = V rS. As is shown in Section 7, the normal
bundle NV of V in P3 admits a partial connection along FV,0 on U0 and the
first Atiyah class a1(NV ) is localized near S and yield an “Atiyah residue”.

Note that, although the first Chern class c1(NV ) is not a priori localized
in this context, it has the “Atiyah localization” and the “Atiyah residue”,
since it coincides with a1(NV ), V being compact Kähler (see Remarks 9.7
and 9.14 below).

To describe the localization more precisely, we need the Čech-Dolbeault
cohomology theory for coverings involving more than two open sets, as S is
singular in our case. We briefly recall what is needed in our case.

Let U0 = V r S be as above and let U1, U2 and U3 be neighborhoods
of S1 r {P}, S2 r {P} and P in V , respectively, such that U1 ⊂ W (0),
U2 ⊂ W (2) and U3 ⊂ W (1). Then U = {U0, . . . , U3} is a covering of V and
U ′ = {U1, U2, U3} is a covering of U ′ = U1 ∪ U2 ∪ U3, which is an open
neighborhood of S in V . Letting Uij = Ui ∩ Uj and Uijk = Ui ∩ Uj ∩ Uk, we
set

Ap,q(U) := ⊕iA
p,q(Ui) ⊕i,j Ap,q−1(Uij) ⊕i,j,k Ap,q−2(Uijk), (9.2)

where in the first sum, 0 ≤ i ≤ 3, in the second, 0 ≤ i < j ≤ 3 and in the
third, 0 ≤ i < j < k ≤ 3. The differential operator

D̄ : Ap,q(U) −→ Ap,q+1(U)
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is defined by

D̄(σi, σij, σijk) = (∂̄σi, σj − σi − ∂̄σij, σjk − σik + σij + ∂̄σijk).

The q-th cohomology of the complex (Ap,∗(U), D̄) is the Čech-Dolbeault
cohomology Hp,q

D̄
(U) of U of type (p, q), which is shown to be canonically

isomorphic to the Dolbeault cohomology Hp,q

∂̄
(V ) of V (cf. Theorem 3.1).

Likewise we have the cohomology Hp,q

D̄
(U ′) of the complex (Ap,∗(U ′), D̄)

by omitting U0 in the above.
Also, setting Ap,q(U , U0) = {σ ∈ Ap,q(U) | σ0 = 0 }, we have the relative

cohomology Hp,q

D̄
(U , U0), which we also denote by Hp,q

∂̄
(V, V r S).

The Atiyah classes are defined in the Čech-Dolbeault cohomology as in
Subsection 4.1, taking a (1, 0)-connection on each open set and making use
of difference forms. In our case, the first Atiyah class a1(NV ) is represented
by the cocycle a1(∇∗) in

A1,1(U) = ⊕iA
1,1(Ui) ⊕i<j A1,0(Uij), (9.3)

(note that Ap,q−2(Uijk) = 0 in (9.2), if (p, q) = (1, 1)) given by

a1(∇∗) = (a1(∇i), a
1(∇i,∇j)),

with ∇i a (1, 0)-connection on Ui. If we take an FV,0-connection as ∇0, we
have a1(∇0) = 0 (cf. Theorem 6.10). Hence a1(∇∗) is in A1,1(U , U0) and
defines the localization a1(NV ,FV ) in H1,1

D̄
(U , U0).

Recall that V is defined by ζ3 = 0 in P3. Thus, in W (0) it is defined by
z = 0 with (x, y) coordinates on W (0) ∩ V (⊃ U1), in W (2) it is defined by
x2 = 0 with (y2, z2) coordinates on W (2) ∩V (⊃ U2) and in W (1) it is defined
by y1 = 0 with (x1, z1) coordinates on W (1) ∩ V (⊃ U3).

Proposition 9.4 Let F be the singular distribution on P3 as above. It
leaves the hyperplane V given by ζ3 = 0 invariant. We have the localization
a1(NV ,FV ) in H1,1

D̄
(U , U0) of a1(NV ) in H1,1

D̄
(U) = H1,1

∂̄
(V ). By a suitable

choice of connections ∇i, it is represented by the Čech-Dolbeault cocycle
a1(∇∗) = (a1(∇i), a

1(∇i,∇j)) given by

a1(∇i) = 0, 0 ≤ i ≤ 3, a1(∇0,∇1) =

√
−1

2π

dx + dy

y

a1(∇0,∇2) =

√
−1

2π

(
z2

dy2

y2

− dz2

)
, a1(∇0,∇3) = −

√
−1

2π

( dx1

x1z1

− dz1

z1

)
a1(∇1,∇2) =

√
−1

2π

dy2

y2

, a1(∇1,∇3) =

√
−1

2π

dx1

x1

, a1(∇2,∇3) =

√
−1

2π

dz1

z1

.

30



Proof : By taking an FV,0-connection for NV on U0 as ∇0, we have
a1(∇i) = 0 as above. We have the exact sequence

0 −→ TV −→ TP3|V
π−→ NV −→ 0.

On each of U1, U2 and U3, the bundle NV is trivial and we may take
ν1 = π( ∂

∂z
), ν2 = π( ∂

∂x2
) and ν3 = π( ∂

∂y1
), respectively, as a frame of NV . Let

∇i be the connection trivial with respect to νi. Then we have a1(∇i) = 0,
1 ≤ i ≤ 3.

To compute the difference forms a1(∇i,∇j), we first make the following
observation (cf. Subsection 1.2). Let θi be the connection matrix (form, in
this case) of ∇i with respect to some holomorphic frame ν of NV . Then,
since the θi’s are of type (1, 0),

a1(∇i,∇j) = c1(∇i,∇j) =

√
−1

2π
(θj − θi). (9.5)

Moreover, if ν̃ = aν is another holomorphic frame and if the θ̃i’s are
corresponding connection forms, we have (cf. (1.4))

θ̃i = θi +
da

a
. (9.6)

We first compute a1(∇0,∇1). For this, we find the connection forms θ0

and θ1 of ∇0 and ∇1 with respect to the frame ν1. Since θ1 = 0, we only
need to find θ0. Note that U01 ⊂ W (0), where we may take the vector fields
v1 and v2 in (9.1) as generators of F . We set

u1 = v1|V = y
∂

∂y
and u2 = v2|V =

∂

∂x
− ∂

∂y
.

Since θ0 is of type (1, 0), we may write as θ0 = f dx+ g dy. Then, on the
one hand we have ∇0(ν1)(u1) = yg · ν1 and ∇0(ν1)(u2) = (f − g) · ν1. On
the other hand by definition,

∇0(ν1)(u1) = π

([
y

∂

∂y
+ z

∂

∂z
,

∂

∂z

]
|V

)
= −ν1,

and

∇0(ν1)(u2) = π

([
∂

∂x
− ∂

∂y
,

∂

∂z

]
|V

)
= 0.

Hence we get

θ0 = −dx + dy

y
,
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which gives the expression for a1(∇0,∇1) by (9.5).
Similar computations show that the connection forms of ∇0 with respect

to the frames ν2 and ν3 are, respectively, −z2
dy2

y2
+ dz2 and dx1

x1z1
− dz1

z1
, which

give the expressions for a1(∇0,∇2) and a1(∇0,∇3).
Finally the relations ν2 = 1

y2
ν1, ν3 = 1

x1
ν1 and ν3 = 1

z1
ν2 give the expres-

sions for a1(∇1,∇2), a1(∇1,∇3) and a1(∇2,∇3) by (9.6). 2

Remark 9.7 From the above, we see that the curvature form of ∇0 with
respect to ν1 is given by

κ0 = dθ0 + θ0 ∧ θ0 = −dx ∧ dy

y2
.

Since it has no (1, 1)-component, we verify a1(∇0) = 0, while c1(∇0) =√
−1
2π

κ0 does not vanish.

We now try to find the corresponding residue. For this, we first consider
the cup product in our case. Recalling (9.2) and (9.3), it is a pairing

A1,1(U) × A1,1(U) −→ A2,2(U)

given by

(σi, σij, 0) ` (τi, τij, 0) = (σi ∧ τi, σi ∧ τij + σij ∧ τj,−σij ∧ τjk).

This induces a pairing H1,1

D̄
(U)×H1,1

D̄
(U) −→ H2,2

D̄
(U), which followed by

integration
∫

V
: H2,2

D̄
(U) ' H2,2

∂̄
(V ) −→ C defines the Kodaira-Serre duality.

In the relative case, we have σ0 = 0 and the above cup product involves
only (τi, τij) with i ≥ 1. Hence we have the pairing

A1,1(U , U0) × A1,1(U ′) −→ A2,2(U , U0).

This in turn induces the pairing

H1,1

D̄
(U , U0) × H1,1

D̄
(U ′) −→ H2,2

D̄
(U , U0),

which, followed by integration, defines the ∂̄-Alexander homomorphism

Ā : H1,1

D̄
(U , U0) −→ H1,1

D̄
(U ′)∗

and we have a commutative diagram as in Proposition 3.6, to which we come
back below (cf. (9.13)).
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We look the ∂̄-Alexander homomorphism more closely. We take a “sys-
tem of honeycomb cells” (Ri) adapted to U , which will be given explicitly
below. For a class [σ] in H1,1

D̄
(U , U0), σ = (σi, σij), the image of [σ] by Ā is

a functional assigning to each class [τ ] in H1,1

D̄
(U ′), τ = (τi, τij), the integral

∫
V

σ ` τ =
∑

1≤i≤3

(∫
Ri

σi ∧ τi +

∫
R0i

σ0i ∧ τi

)

+
∑

1≤i<j≤3

(∫
Rij

σi ∧ τij + σij ∧ τj −
∫

R0ij

σ0i ∧ τij

)
.

(9.8)

In the above, each Ri has the same orientation as V . We set Rij = Ri∩Rj =
∂Ri ∩ ∂Rj, which has the same orientation as ∂Ri (opposite orientation of
∂Rj) and R0ij = R0 ∩ Rij = ∂R0 ∩ ∂Rij, which has the same orientation as
∂R0i.

In fact, the right hand side of (9.8) can be reduced choosing Stein open
sets as Ui, 1 ≤ i ≤ 3, which is possible (for example, we may take as U1 a
tubular neighborhood of S1 r {P} in V ∩ W (0) containing R1, or even the
whole V ∩ W (0) ' C2).

Lemma 9.9 If we choose Ui, 1 ≤ i ≤ 3, to be Stein, we may represent every
class in H1,1

D̄
(U ′) by a cocycle of the form ξ = (0, ξij).

Proof : From D̄τ = 0, we have ∂̄τi = 0, 1 ≤ i ≤ 3. Since each Ui is
Stein, there exist a (1, 0)-form ρi such that τi = ∂̄ρi. If we set ξ = (0, ξij)
with

ξij = τij + ρi − ρj,

Then we have τ = ξ + D̄ρ, ρ = (ρi, 0). 2

If we use the representative as above, the right hand side of (9.8) becomes∑
1≤i<j≤3

(∫
Rij

σi ∧ ξij −
∫

R0ij

σ0i ∧ ξij

)
. (9.10)

Recall that the residue Resa1(FV , NV ; U ′) of FV with respect to a1 for
NV on U ′ is the image of the localization a1(NV ,FV ).

Proposition 9.11 If we choose connections ∇i as in Proposition 9.4 and
a representative ξ of each class in H1,1(U ′) as in Lemma 9.9, the residue
Resa1(FV , NV ; U ′) is the functional assigning to [ξ] the value

−
∑

1≤i<j≤3

∫
R0ij

a1(∇0,∇i) ∧ ξij.
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Proof : The proposition follows from a1(∇i) = 0 and (9.10). 2

The domains of integrations R0ij can be given explicitly, for example, as
follows. Let δ be positive number with δ2 < 1, and set

R3 = { ζ ∈ V | |ζ0|2 + |ζ2|2 ≤ δ2 |ζ1|2 },
R2 = { ζ ∈ V | |ζ0|2 ≤ δ2 |ζ2|2 } r Int R3,

R1 = { ζ ∈ V | |ζ2|2 ≤ δ2 |ζ0|2 } r Int R3,

R0 = U0 r (∪3
i=1Int Ri ∪1≤i<j≤3 Int Rij).

From δ < 1, we see that R12 = ∅ and thus R012 = ∅. We first express
R013 explicitly. As a set, it is given by

|y| = δ, 1 + |y|2 = δ2 |x|2 and z = 0.

Setting δ′ =
√

1+δ2

δ
, we have

R013 = { (x, y) | |x| = δ′, |y| = δ }, (9.12)

oriented so that arg x ∧ arg y is negative. Similarly we have

R023 = { (y2, z2) | |y2| = δ, |z2| = δ′ },

which is oriented so that arg y2 ∧ arg z2 is positive.
Now we consider the commutative diagram

H1,1

D̄
(U , U0)

j∗−−−→ H1,1

D̄
(U) ' H1,1

∂̄
(V ) = H1,1

∂̄
(P2) ' H2(P2, C)yĀV

yKSV =PV

H1,1

D̄
(U ′)∗

i∗−−−→ H1,1

D̄
(U)∗ ' H1,1

∂̄
(V )∗ = H1,1

∂̄
(P2)∗ ' H2(P2, C).

(9.13)

The normal bundle NV of V in P3 is isomorphic to the hyperplane bundle
H2 on V = P2. Since P2 is compact Kähler, we know that the first Atiyah
class a1(NV ) in H1,1

∂̄
(V ) = H2(P2, C) ' C coincides with the first Chern

class c1(NV ) = c1(H2), the generator of the cohomology.
We try to find i∗Resc1(F , NV ; S) and verify the Residue Theorem 4.3. Re-

call that the isomorphism H1,1

∂̄
(P2) −→ H1,1

D̄
(U) is induced by τ 7→ (τi, τij) =

(τ, 0) (cf. Theorem 3.1). Also note that H1,1

∂̄
(P2) ' C, which is generated

by the class of

τ0 =

√
−1

2π
∂∂̄ log ‖ζ‖2
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(cf. e.g., [14]). For τ0 we may take, as ρi in the proof of Lemma 9.9, the
forms

ρ1 = −
√
−1

2π

x̄ dx + ȳ dy

1 + |x|2 + |y|2
, ρ2 = −

√
−1

2π

ȳ2 dy2 + z̄2 dz2

1 + |y2|2 + |z2|2
,

ρ3 = −
√
−1

2π

x̄1 dx1 + z̄1 dz1

1 + |x1|2 + |z2
1

and we compute

ξ13 = ρ1 − ρ3 = −
√
−1

2π

dx

x
, ξ23 = ρ2 − ρ3 = −

√
−1

2π

dz2

z2

.

Thus, to the canonical generator [τ0], the residue assigns the value

−
∫

R013

a1(∇0,∇1) ∧ ξ13 −
∫

R023

a1(∇0,∇2) ∧ ξ23

=

(√
−1

2π

)2 {∫
R013

(
dx + dy

y

)
∧ dx

x
+

∫
R023

(
z2

dy2

y2

− dz2

)
∧ dz2

z2

}
= −

(√
−1

2π

)2 ∫
R013

dx ∧ dy

xy
= 1

(cf. (9.12)), as expected.
The above computation appears to suggest that the residue is concen-

trated on S1.

Remark 9.14 Although the first Chern class c1(NV ) is not localized as
a Chern class (cf. Remark 9.7), it has the “Atiyah localization” and the
“Atiyah residue”.
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gata”, Via della Ricerca Scientifica 1, 00133 Roma, Italy,
e-mail: tovena@mat.uniroma2.it

37


