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Abstract. In this short note we would like to show how it is possible to use techniques
introduced in the theory of local dynamics of holomorphic germs tangent to the identity to study
global meromorphic self-maps of the complex projective space. More precisely, we shall prove three
index theorems, relating suitably defined local residues at the fixed and indeterminacy points of a
meromorphic map f :Pn 99K Pn with Chern classes of Pn.

In this short note we would like to show how the techniques introduced in [ABT1] (see also [ABT2, 3], [Br],
[BT] and [AT2]) for studying the local dynamics of holomorphic germs tangent to the identity can be used
to study global meromorphic self-maps of the complex projective space Pn. More precisely, we shall prove
the following index theorem:

Theorem 1: Let f :Pn 99K Pn be a meromorphic self-map of degree ν+ 1 ≥ 2 of the complex n-dimensional
projective space. Let Σ(f) = Fix(f) ∪ I(f) be the union of the indeterminacy set I(f) of f and the fixed
points set Fix(f) of f . Let Σ(f) = tαΣα be the decompositon of Σ in connected components, and denote
by N the tautological line bundle of Pn. Then:

(i) we can associate to each Σα a complex number Res1(f,Σα) ∈ C, depending only on the local behavior
of f nearby Σα, so that ∑

α

Res1(f,Σα) =

∫
Pn

c1(N)n = (−1)n ;

(ii) given a homogeneous symmetric polynomial ϕ ∈ C[z1, . . . , zn] of degree n we can associate to each Σα
a complex number Res2

ϕ(f,Σα) ∈ C, depending only on the local behavior of f nearby Σα, such that

∑
α

Res2
ϕ(f,Σα) =

∫
Pn

ϕ(TPn −N⊗ν) ;

(iii) if ν > 1, given a homogeneous symmetric polynomial ψ ∈ C[z0, . . . , zn] of degree n we can associate
to each Σα a complex number Res3

ψ(f,Σα) ∈ C, depending only on the local behavior of f nearby Σα,
such that ∑

α

Res3
ψ(f,Σα) =

∫
Pn

ψ
(
(TPn ⊕N)−N⊗ν

)
.

In this statement, if ϕ ∈ C[z1, . . . , zn] is a homogeneous symmetric polynomial and E and F are vector
bundles over Pn, we put

ϕ(E − F ) = ϕ̃
(
c1(E − F ), . . . , cr(E − F )

)
,

where the cj(E − F ) are the Chern classes of the virtual bundle E − F , and ϕ̃ ∈ C[z1, . . . , zr] is the unique
polynomial such that

ϕ = ϕ̃(σ1, . . . , σr) ,

where σ1, . . . , σr ∈ C[z1, . . . , zn] are the elementary symmetric functions on n variables.
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Remark 1: If Σ(f) is finite, then the number of points in Σ(f), counted with respect to a suitable
multiplicity, is

1

ν
[(ν + 1)n+1 − 1] =

n∑
k=0

(
n+ 1

k + 1

)
νk ;

see, e.g., [AT1].

Remark 2: Since the total Chern class of TPn in terms of the first Chern class of N is given by

c(TPn) =
(
1− c1(N)

)n+1
, the total Chern class of TPn −N⊗ν is given by

c(TPn −N⊗ν) =

(
1− c1(N)

)n+1

1 + νc1(N)
=
(
1− c1(N)

)n+1
n∑
j=0

(−1)jνjc1(N)j

and thus the Chern classes of TPn −N⊗ν are given by

cj(TPn −N⊗ν) = (−1)j
j∑

k=0

(
n+ 1

k

)
νj−k cj1(N) .

In particular,∫
Pn

cn(TPn −N⊗ν) =

n∑
k=0

(
n+ 1

k

)
νn−k and

∫
Pn

cn1 (TPn −N⊗ν) = (ν + 1 + n)n . (1)

Arguing in a similar way we get that the Chern classes of (TPn ⊕N)−N⊗ν are given by

cj
(
(TPn ⊕N)−N⊗ν

)
= (−1)j

j∑
k=0

[(
n+ 1

k

)
−
(
n+ 1

k − 1

)]
νj−k cj1(N) ,

with the convention
(
n+1
−1

)
= 0.

Remark 3: As the proof of Theorem 1 presented at the end of this note will make clear, this index
theorem is a direct consequence of the index theorems proved in [ABT1] on holomorphic self-maps pointwise
fixing an hypersurface S of a complex manifold M . In turn, as shown in a very general setting in [ABT2],
these index theorems follow from the existence of a holomorphic action (or partial connection) of a suitable
tensor power N⊗νS of the normal bundle NS on a (possibly virtual) vector bundle E on S. The embedding
of S into M yields three natural vector bundles to consider: NS , TS and TM |S ; accordingly, we get three
index theorems. Indeed, case (i) of Theorem 1 corresponds to the existence of a holomorphic action on NS
(a Camacho-Sad action); case (ii) corresponds to the existence of a holomorphic action on TS − N⊗νS (a
Baum-Bott action); and case (iii) corresponds to the existence of a holomorphic action on TM |S −N⊗νS (a
Lehmann-Suwa action).

Remark 4: As a personal aside, in my opinion index theorems, giving quantitative and explicit links
between local and global objects, rank among the most beautiful results in mathematics, and as such are
an end in themselves. For this reason since I was a budding young mathematician I hoped to be able to
discover at least one new index theorem during my career. So, as you can imagine, I was pretty excited
when in [A2] I realized that I was proving such a theorem; and now that thanks to the work done in [ABT1]
and [ABT2] (and in this note) I can say that I actually proved not one but several new index theorems I
consider myself (mathematically) realized and content (and thus ready to explore new avenues of research
in the future, of course). But index theorems, besides being beautiful, are useful too; for instance they
can be of help in classifying objects or behaviors, imposing constraints that should be satisfied. We shall
not discuss applications of Theorem 1 in this note; however similar (though less general) theorems already
present in the literature have been for instance applied to show that generic holomorphic self-maps of Pn(C)
have infinitely many non-attracting periodic points (see [U]); to classify complex homogenous vector fields
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(see [G]); to classify particular classes of Liouville integrable complex Hamiltonian systems (see [P1, 2]); and
to study the (non-)existence of compact positive dimensional fixed points set of holomorphic self-maps of
complex surfaces (see [ABT1]).

The usefulness of a theorem like Theorem 1 is of course related to the possibility of computing the
residues involved, and indeed we have explicit formulas for the (generic) case of point components, expressed
in terms of Grothendieck residues (the residues at components of positive dimension can be expressed by
using Lehmann-Suwa theory; see [LS], [S, Chapter IV], [ABT1, (6.1)] and [BS]; see also [B]). To state the
formulas we recall three definitions.

Definition 1: LetOnwo be the ring of germs of holomorphic functions at wo ∈ Cn. Take g1, . . . , gn ∈ Onwo

such that wo is an isolated zero of g = (g1, . . . , gn). Then the Grothendieck residue of h ∈ Onwo along g1, . . . , gn
is defined (see [H], [L, Section 5], [LS, Section 4], [S, pp.105–107]) by the formula

Reswo

[
h(w) dw1 ∧ · · · ∧ dwn

g1, . . . , gn

]
=

(
1

2πi

)n ∫
Γ

h

g1 · · · gn
dw1 ∧ · · · ∧ dwn ,

where Γ = {|gj(w)| = ε | j = 1, . . . , n} for ε > 0 small enough, oriented so that d arg(g1)∧· · ·∧d arg(gn) > 0.

Definition 2: Let ϕ ∈ C[z1, . . . , zn] be a homogeneous symmetric polynomial in n variables, and
L:V → V an endomorphism of an n-dimensional complex vector space V . Then we set

ϕ(L) = ϕ(λ1, . . . , λn) ,

where λ1, . . . , λn ∈ C are the eigenvalues of L.

Definition 3: We shall say that a homogeneous polynomial self-map F = (F0, . . . , Fn):Cn+1 → Cn+1

of degree ν + 1 induces the meromorphic self-map f :Pn 99K Pn if

f([z0 : · · · : zn]) = [F0(z0, . . . , zn) : · · · : Fn(z0, . . . , zn)]

for all [z0 : · · · : zn] ∈ Pn. It is well known (see, e.g., [FS1]) that every meromorphic self-map of Pn of degree
ν + 1 is induced by a unique homogeneous polynomial self-map of Cn+1 of degree ν + 1.

We can now state our next theorem:

Theorem 2: Let f :Pn 99K Pn be a meromorphic self-map of degree ν+ 1 ≥ 2 of the complex n-dimensional
projective space. Let Σ(f) = Fix(f)∪I(f) be the union of the indeterminacy set I(f) of f and the fixed points
set Fix(f) of f , and assume that p = [1 : wo1 : · · · : won] is an isolated point in Σ(f). Set wo = (wo1, . . . , w

o
n),

let F = (F0, . . . , Fn):Cn+1 → Cn+1 be the homogeneous polynomial self-map of degree ν + 1 inducing f ,
and define g:Cn → Cn by setting

gj(w) = Fj(1, w)− wjF0(1, w) (2)

for all w ∈ Cn and j = 1, . . . , n. Then:

(i) we have

Res1(f, p) = Reswo

[
F0(1, w)n dw1 ∧ · · · ∧ dwn

g1, . . . , gn

]
;

(ii) if ϕ ∈ C[z1, . . . , zn] is a homogeneous symmetric polynomial of degree n then

Res2
ϕ(f, p) = Reswo

[
ϕ(dgw) dw1 ∧ · · · ∧ dwn

g1, . . . , gn

]
;

(iii) if ψ ∈ C[z0, . . . , zn] is a homogeneous symmetric polynomial of degree n then

Res3
ψ(f, p) = Reswo

[
ψ
(
F0(1, w), µ1(w), . . . , µn(w)

)
dw1 ∧ · · · ∧ dwn

g1, . . . , gn

]
,
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where µ1(w), . . . , µn(w) are the eigenvalues of dgw.

This statement is effective because we can explicitly compute a Grothendieck residue using an algorithm
suggested by Hartshorne (see [BB] and [H]). Without loss of generality, we can assume wo = O. Since the
origin is an isolated zero of g, there exist minimal positive integers α1, . . . , αn such that wα1

1 , . . . , wαn
n belong

to the ideal generated by g1, . . . , gn in On = OnO. Hence there exist holomorphic functions bij ∈ On such
that

wαi
i =

n∑
j=1

bijgj .

The properties of the Grothendieck residue (see [H]) then imply

ResO

[
h dw1 ∧ · · · ∧ dwn

g1, · · · , gn

]
= ResO

[
hdet(bij) dw1 ∧ · · · ∧ dwn

wα1
1 , · · · , wαn

n

]
.

The right-hand side is now evaluated by expanding hdet(bij) in a power series in the wi; the residue is given
by the coefficient of wα1−1

1 · · ·wαn−1
n .

The easiest case is when det(dgO) 6= 0. Indeed, since O is an isolated zero of g we can write

gj =

k∑
i=1

cjiwi .

Differentiating this and evaluating in O we get

∂gj
∂wk

(O) = cjk(O) ;

therefore if det(dgO) 6= 0 we can invert the matrix (cji) in a neighborhood of O and write

wi =

n∑
j=1

bijgj ,

where (bij) is the inverse matrix of (cji). So we have α1 = · · · = αn = 1 and det(bij)(O) = 1/ det(dgO).
It thus follows that

det(dgwo) 6= 0 =⇒ Reswo

[
h(w) dw1 ∧ · · · ∧ dwn

g1, . . . , gn

]
=

h(wo)

µ1 · · ·µn
, (3)

where µ1, . . . , µn ∈ C are the eigenvalues of dgwo .
In our situation, gj(w) = Fj(1, w)− wjF0(1, w); therefore we have

∂gj
∂wk

(w) =
∂Fj
∂wk

(1, w)− wj
∂F0

∂wk
(1, w)− δjkF0(1, w) ,

where δjk is Kronecker’s delta.
So if p = [1 : wo1 : · · · : won] is an indeterminacy point we have F0(1, wo) = 0 and

Jac(g)(wo) =

(
∂Fj
∂wk

(1, wo)− woj
∂F0

∂wk
(1, wo)

)
j,k=1,...,n

.

If instead p is a fixed point, we can consider the differential of f at p. Let χ be the usual chart of Pn centered
at [1 : 0 : · · · : 0]. Then

f̃(w) = χ ◦ f ◦ χ−1(w) =

(
F1(1, w)

F0(1, w)
, . . . ,

Fn(1, w)

F0(1, w)

)
,
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and so
∂f̃j
∂wk

(w) =
1

F0(1, w)

[
∂Fj
∂wk

(1, w)− Fj(1, w)

F0(1, w)

∂F0

∂wk
(1, w)

]
.

In particular,
∂f̃h
∂wk

(wo) =
1

F0(1, wo)

[
∂Fj
∂wk

(1, wo)− woj
∂F0

∂wk
(1, wo)

]
; (4)

therefore
Jac(g)(wo) = F0(1, wo)

[
Jac(f̃)(wo)− I

]
.

It follows that the eigenvalues µ1, . . . , µn of dgwo are related to the eigenvalues λ1, . . . , λn of dfp by the
formula

∀j = 1, . . . , n µj = F0(1, wo)(λj − 1) .

In particular, det(dgwo) 6= 0 if and only if 1 is not an eigenvalue of dfp, that is if and only if p is a simple
fixed point of f .

Summing up, these computations give the following particular case of Theorem 2:

Corollary 3: Let f :Pn 99K Pn be a meromorphic self-map of degree ν+1 ≥ 2 of the complex n-dimensional
projective space.

(a) Assume that p ∈ Pn is a simple (necessarily isolated) fixed point of f , and let λ1, . . . , λn 6= 1 be the
eigenvalues of dfp. Then:

(i) we have

Res1(f, p) =
(−1)n

(1− λ1) · · · (1− λn)
;

(ii) if ϕ ∈ C[z1, . . . , zn] is a homogeneous symmetric polynomial of degree n then

Res2
ϕ(f, p) =

ϕ(1− λ1, . . . , 1− λn)

(1− λ1) · · · (1− λn)
;

(iii) if ψ ∈ C[z0, . . . , zn] is a homogeneous symmetric polynomial of degree n then

Res3
ψ(f, p) = (−1)n

ψ(1, λ1 − 1, . . . , λn − 1)

(1− λ1) · · · (1− λn)
.

(b) Assume that p = [1 : wo1 : · · · : won] is an isolated indeterminacy point, and that detG 6= 0, where

G =

(
∂Fj
∂wk

(1, wo)− woj
∂F0

∂wk
(1, wo)

)
j,k=1,...,n

,

and F = (F0, . . . , Fn):Cn+1 → Cn+1 is the homogeneous polynomial self-map of degree ν+1 inducing f .
Denote by µ1, . . . , µn 6= 0 the eigenvalues of G. Then:
(i) we have

Res1(f, p) = 0 ;

(ii) if ϕ ∈ C[z1, . . . , zn] is a homogeneous symmetric polynomial of degree n then

Res2
ϕ(f, p) =

ϕ(µ1, . . . , µn)

µ1 · · ·µn
;

(iii) if ψ ∈ C[z0, . . . , zn] is a homogeneous symmetric polynomial of degree n then

Res3
ψ(f, p) =

ψ(0, µ1, . . . , µn)

µ1 · · ·µn
.

This corollary shows that our Theorem 1 is related to Ueda’s index theorem, which however applies
only to holomorphic self-maps having only simple fixed points:
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Theorem 4: (Ueda [U]) Let f :Pn → Pn be holomorphic of degree ν + 1 ≥ 2, and assume that all fixed
points of f are simple (and thus isolated). For p ∈ Fix(f), let λ1(p), . . . , λn(p) 6= 1 denote the eigenvalues
of dfp. Then

∀k = 0, . . . , n
∑

p∈Fix(f)

σk(dfp)(
1− λ1(p)

)
· · ·
(
1− λn(p)

) = (−1)k(ν + 1)k .

For instance, the case k = 0 is a consequence of Theorem 1.(i), and the cases k > 0 can be linked to
Theorem 1.(ii) and (iii) by using the formula

σj(I − L) =

j∑
`=0

(
n− `
n− j

)
(−1)`σ`(L)

valid for every endomorphism L of an n-dimensional complex vector space.

Remark 5: Corollary 3 shows that our Theorem 1 generalizes to the case of non-simple or non-isolated
fixed (or indeterminacy) points the classical holomorphic Lefschetz formula (see, e.g., [GH, p. 426]), as well
as results obtained by Guillot [G] and, in a different context, by Przybylska [P1, P2].

Example 1: Let us consider the map f([z]) = [zν+1
0 : · · · : zν+1

n ]. This map is holomorphic, and all its
fixed points are simple. More precisely, for each ` = 0, . . . , n the set Fix(f) contains exactly

(
n+1
`+1

)
ν` fixed

points of the form [ζ0 : · · · : ζn], where ` + 1 of the ζj are ν-th roots of unity, and the remaining ζj ’s are
equal to 0. If p ∈ Fix(f) has exactly `+ 1 non-zero homogeneous coordinates, we shall say that p is a fixed
point of level `.

Using (4) it is easy to see that if p ∈ Fix(f) is a fixed point of level ` then the eigenvalues of dfp are
ν + 1 with multiplicity ` and 0 with multiplicity n− `. In particular,

(
1− λ1(p)

)
· · ·
(
1− λn(p)

)
= (−1)`ν`,

and so Theorem 1.(i) becomes

(−1)n
n∑
`=0

(
n+ 1

`+ 1

)
(−1)` = (−1)n ,

while Theorem 1.(ii) becomes

(−1)n
n∑
`=0

(
n+ 1

`+ 1

)
(−1)`ϕ(ν, . . . , ν︸ ︷︷ ︸

` times

,−1, . . . ,−1) =

∫
Pn

ϕ(TPn −N⊗ν) ,

and Theorem 1.(iii) becomes

(−1)n
n∑
`=0

(
n+ 1

`+ 1

)
(−1)`ψ(1, ν, . . . , ν︸ ︷︷ ︸

` times

,−1, . . . ,−1) =

∫
Pn

ψ
(
(TPn ⊕N)−N⊗ν

)
.

For instance, taking ϕ = σn1 and recalling (1) we get

(ν + 1 + n)n =

∫
Pn

cn1 (TPn −N⊗ν) = (−1)n
n∑
`=0

(
n+ 1

`+ 1

)
(−1)`

(
(ν + 1)`− n

)n
.

The (non-trivial) equality of the left and right-hand sides in this formula can also be proved directly by using
Abel’s formula

(x+ y)r =

r∑
k=0

(
r

k

)
x(x− kz)k−1(y + kz)r−k (5)
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valid for all r ∈ N and x, y, z ∈ C with x 6= 0 (see, e.g., [K, p. 56]). Indeed we have

n∑
`=0

(
n+ 1

`+ 1

)
(−1)`

(
(ν + 1)`− n

)n
=

n∑
`=0

(
n+ 1

`+ 1

)(
n− (ν + 1)`

)`(−n+ (ν + 1)`
)n−`

=

n+1∑
k=1

(
n+ 1

k

)(
n+ ν + 1− k(ν + 1)

)k−1(−n− ν − 1 + k(ν + 1)
)n+1−k

=
1

n+ ν + 1

[n+1∑
k=0

(
n+ 1

k

)
(n+ ν + 1)

(
n+ ν + 1− k(ν + 1)

)k−1(−n− ν − 1 + k(ν + 1)
)n+1−k

+ (−1)n(n+ ν + 1)n+1

]
= (−1)n(ν + n+ 1)n ,

thanks to (5) applied with r = n+ 1, x = −y = n+ ν + 1 and z = ν + 1.
Analogously, taking ϕ = σn we get

n∑
k=0

(
n+ 1

k

)
νn−k =

∫
Pn

cn(TPn −N⊗ν) =

n∑
`=0

(
n+ 1

`+ 1

)
ν` =

(ν + 1)n+1 − 1

ν
=

n∑
`=0

(ν + 1)` ,

in agreement with both (1) and Theorem 4.

Let us finally show how to use the local theory developed in [ABT1] and [AT2] to prove Theorems 1
and 2.

Given a meromorphic f :Pn 99K Pn of degree ν + 1 ≥ 2, let F = (F0, . . . , Fn):Cn+1 → Cn+1 be the
homogeneous polynomial map of degree ν + 1 inducing f . First of all, we associate to F the homogeneous
vector field

Q =

n∑
j=0

Fj
∂

∂zj
.

It is well-known that the time-1 map fQ of Q is a germ of holomorphic self-map of Cn+1 tangent to the
identity; furthermore we can write fQ(z) = z + F (z) + O(‖z‖v+2). In particular, by definition a direction
v ∈ Cn+1 \ {O} is a non-degenerate characteristic direction for fQ if and only if [v] ∈ Pn is a fixed point
of f ; and it is a degenerate characteristic direction for fQ if and only if [v] is an indeterminacy point of f .
Furthermore, since f has degree at least 2 then Q is non-dicritical, that is not all directions are characteristic.

Now let π:M → Cn+1 be the blow-up of the origin, and denote by E = π−1(O) the exceptional divisor.
By construction, E is canonically biholomorphic to Pn; furthermore, the blow-up M can be identified with
the total space of the normal bundle NE of E in M , and NE is isomorphic to the tautological line bundle N
on Pn.

We can now lift fQ to the blow-up, obtaining (see, e.g., [A1]) a germ f̂Q about E of holomorphic
self-map of M fixing E pointwise, and we may apply all the machinery developed in [ABT1]. First of all,

since Q is non-dicritical then f̂Q is tangential and has order of contact ν with E ([ABT1, Proposition 1.4]).
Then we can define ([ABT1, Proposition 3.1 and Corollary 3.2]) the canonical section Xf , which is a global
holomorphic section of TE ⊗ (N∗E)⊗ν . In local coordinates in M centered at [1 : 0 : · · · : 0] ∈ E we can write

Xf =

n∑
j=1

gj
∂

∂wj
⊗ (dw0)⊗ν , (6)

where g1, . . . , gn are given by (2), and E in these coordinates is given by {w0 = 0}.
In particular, we can think of Xf as a bundle morphism Xf :N⊗νE → TE, vanishing exactly on the

characteristic directions of fQ, and thus we have proved the following (already noted, for instance, in [FS2,
p. 409]):
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Proposition 5: Let f :Pn 99K Pn be a meromorphic self-map of degree ν + 1 ≥ 2. Then the canonical
section Xf , given locally by (6), defines a global singular holomorphic foliation of Pn in Riemann surfaces,
singular exactly at the fixed and indeterminacy points of f .

We can now apply the index theorems proved in [ABT1]. Theorem 1.(i) follows immediately from the
Camacho-Sad-like index Theorem 6.2 in [ABT1], recalling that

∫
Pn c1(N)n = (−1)n. Theorem 1.(ii) follows

from the Baum-Bott index theorem (see [S, Th. III.7.6] and [ABT1, Theorem 6.4]); and Theorem 1.(iii)
follows from the Lehmann-Suwa-like index Theorem 6.3 in [ABT1], that can be applied to this situation
because E is automatically comfortably embedded in M ([ABT1, Example 2.4]), and recalling that the
exact sequence

O −→ TE −→ TM |E −→ NE −→ O

implies that c(TM |E) = c(TPn ⊕NE).
Theorem 2 also follows from [ABT1]. Indeed, Theorem 2.(i) is an immediate consequence of [ABT1,

Theorem 6.5.(i)] and the computations in [AT2, Section 5]. The same computations and [ABT1, Theorem 6.6]
yield Theorem 2.(iii); and Theorem 2.(ii) follows from [BB] and [S, Th. III.5.5].

Acknowledgments. I would like to thank Francesca Tovena, Jasmin Raissy and Matteo Ruggiero for
many useful conversations, Nur̀ıa Fagella and the Institut de Matemàtica de la Universitat de Barcelona
for their wonderful hospitality during the preparation of this note, and Jack Milnor for creating so much
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