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1 Introduction

The aim of this paper is to collect and put in context a few open problems in the area
of local holomorphic discrete dynamics; so let us begin by defining what is a discrete
local holomorphic dynamical system.

Definition 1 Let M be a complex manifold, and p ∈ M . A discrete holomorphic local
dynamical system at p is a holomorphic map f : U → M such that f (p) = p, where
U ⊆ M is an open neighborhood of p; we shall also always assume that f �≡ idU .
We shall denote by End(M, p) the set of holomorphic local dynamical systems at p.

We shall be mainly concerned with the behavior of f nearby p, and thus End(M, p)
actually is the set of germs of holomorphic self-maps of M at p; for this reason we
shall often use the word “germ” as an abbreviation for “discrete holomorphic local
dynamical system”, and we shall allow us to restrict the domain of f ∈ End(M, p) to
any suitable neighborhood of p whenever useful.
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262 M. Abate

In the next sections we shall discuss some specific open problems, selected accord-
ing to our taste and with no pretense of completeness; but in this introduction we shall
instead present the most basic questions one can ask about a local discrete dynamical
system. Claiming to have completely understood a given local dynamical systems
amounts to having complete answers to at least the first two questions below; and
claiming to have completely understood a given class of discrete holomorphic local
dynamical systems most of the times amounts to having answers to the remaining
three questions.

First of all, a local dynamical system is not a dynamical system in the standard
(global) sense of the word, because points can escape from the domain of definition.
However, it is easy to associate a bona-fide dynamical system with any local dynamical
system. The phase space of this new dynamical system is the stable set:

Definition 2 Let f ∈ End(M, p) be a (discrete holomorphic) local dynamical system
defined on an open set U ⊆ M . Then the stable set K f of f is

K f =
∞⋂

k=0

f −k(U ).

In other words, the stable set of f is the set of all points z ∈ U such that the orbit
{ f k(z) | k ∈ N} is well-defined, where f k denotes the kth iterate of f . If z ∈ U \ K f ,
we shall say that z (or its orbit) escapes from U .

Clearly, p ∈ K f , and so the stable set is never empty (but it can happen that
K f = {p}). It depends a priori on U , but again in most cases we shall be interested
only in the behavior nearby p. Thus the first natural question in discrete holomorphic
local dynamics is:

(Q1) What is the topological structure of (the germ at p of) K f ?

For instance, does K f have non-empty interior? Is it locally connected at p? Is K f \{p}
connected? What is the topological (homological, cohomological) structure of U \K f ?
And so on.

Remark 1 Both the definition of stable set and Question 1 are topological in character;
we might also state them for local dynamical systems which are continuous only. How-
ever, the answers might (and usually will) strongly depend on the holomorphicity of
the dynamical system.

Clearly, the stable set K f is completely f -invariant, and thus the pair (K f , f ) is
the promised discrete global dynamical system, canonically associated with the given
discrete local dynamical system. In particular, the second natural question in discrete
holomorphic local dynamics is

(Q2) What is the dynamical structure of (K f , f )?

For instance, what is the asymptotic behavior of the orbits? Do they converge to p, or
have they a chaotic behavior? Is there a dense orbit? Do there exist proper f -invariant
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subsets, that is sets L ⊂ K f such that f (L) ⊆ L? If they do exist, what is the dynamics
on them?

To answer all these questions, one of the most efficient ways is to replace f by a
dynamically equivalent but simpler (e.g., linear) system g. In our context, “dynamically
equivalent” means “locally conjugated”; and we have different kinds of conjugacy to
consider.

Definition 3 Let f1 : U1 → M1 and f2 : U2 → M2 be two holomorphic local dynam-
ical systems at p1 ∈ M1 and p2 ∈ M2 respectively. We shall say that f1 and f2 are
holomorphically (respectively, smoothly, Ck with k ∈ N

∗, or topologically) locally
conjugated if there are open neighborhoods W1 ⊆ U1 of p1, W2 ⊆ U2 of p2, and
a biholomorphism (respectively, a C∞ diffeomorphism, a Ck diffeomorphism, or a
homeomorphism) ϕ : W1 → W2 with ϕ(p1) = p2 such that

f1 = ϕ−1 ◦ f2 ◦ ϕ

on ϕ−1
(
W2 ∩ f −1

2 (W2)
) = W1 ∩ f −1

1 (W1).

If f1 : U1 → M1 and f2 : U2 → M2 are locally conjugated we clearly have

K f2|W2
= ϕ(K f1|W1

);

so the local dynamics of f1 about p1 is to all purposes equivalent (up to the order of
smoothness of the local conjugation) to the local dynamics of f2 about p2.

In particular, using local coordinates centered at p ∈ M it is easy to show that any
holomorphic local dynamical system at p is holomorphically locally conjugated to a
holomorphic local dynamical system at O ∈ C

n , where n = dim M ; so from now on
we shall mostly work only with End(Cn, O).

Whenever we have an equivalence relation in a class of objects, classification prob-
lems come out. So the third natural question in local holomorphic dynamics is

(Q3) Find a (possibly small) class F of holomorphic local dynamical systems at O ∈
C

n such that every holomorphic local dynamical system f at a point in an
n-dimensional complex manifold is holomorphically (respectively, smoothly,
Ck , or topologically) locally conjugated to a (possibly) unique element of
F , called holomorphic (respectively, smooth, Ck or topological) normal form
of f .

Unfortunately, the holomorphic classification is often too complicated to be practical;
the family F of normal forms might be uncountable. A possible replacement is looking
for invariants instead of normal forms:

(Q4) Find a way to associate a (possibly small) class of (possibly computable) objects,
called invariants, to any holomorphic local dynamical system f at O ∈ C

n so
that two holomorphic local dynamical systems at O can be holomorphically
(respectively, smoothly, Ck , or topologically) locally conjugated only if they
have the same invariants. The class of invariants is complete if two holomorphic
local dynamical systems at O are holomorphically (respectively, smoothly, Ck ,
or topologically) locally conjugated if and only if they have the same invariants.
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264 M. Abate

Contrarily to the previous ones, our final general question makes sense only for
holomorphic local dynamical systems. A discrete holomorphic local dynamical sys-
tem at O ∈ C

n is given by an element of C0{z1, . . . , zn}n , the space of n-tuples of
converging power series in z1, . . . , zn without constant terms, which is a subspace of
the space C0[[z1, . . . , zn]]n of n-tuples of formal power series without constant terms.
It is well known that C0[[z1, . . . , zn]]n is closed under composition of power series,
and that an element� ∈ C0[[z1, . . . , zn]]n has an inverse (with respect to composition)
still belonging to C0[[z1, . . . , zn]]n if and only if its linear part is a linear automorphism
of C

n .

Definition 4 We say that f1, f2 ∈ C0[[z1, . . . , zn]]n are formally conjugated if there
is an invertible � ∈ C0[[z1, . . . , zn]]n such that

f1 = �−1 ◦ f2 ◦�

in C0[[z1, . . . , zn]]n .

Clearly, two holomorphically locally conjugated holomorphic local dynamical
systems are both formally and topologically locally conjugated too. On the other
hand, there are examples of holomorphic local dynamical systems that are topologi-
cally locally conjugated without being neither formally nor holomorphically locally
conjugated, and examples of holomorphic local dynamical systems that are formally
conjugated without being neither holomorphically nor topologically locally conju-
gated. So the last natural general question in local holomorphic dynamics is

(Q5) Find normal forms and invariants with respect to the relation of formal conju-
gacy for holomorphic local dynamical systems at O ∈ C

n .

In the rest of this paper we shall describe a few specific open problems, both in one
and in several complex variables; we refer to [3,4] and [14] for surveys on the theory
of discrete holomorphic local dynamical systems, for more details on what is known
about the previous questions, and for the background of the open problems we selected.

2 One complex variable

2.1 Linearization in specific families

A discrete holomorphic local dynamical system in one complex variable is given by
a germ of holomorphic function fixing the origin of the form

f (z) = λz + a2z2 + · · · ∈ C{z},

where λ = f ′(0) ∈ C
n is the multiplier of f . It is well-known (Kœnigs’ theorem) that

if |λ| �= 0, 1 then f is holomorphically linearizable, that is locally holomorphically
conjugated to the linear map w → λw—and thus in this case questions (Q1)–(Q5)
presented in the introduction are easily solved. If a1 = 0, and thus we can write
f (z) = ak zk + o(zk) with k ≥ 2 and ak �= 0, it is also well-known (Böttcher’s
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theorem) that f is locally holomorphically conjugated tow → wk , and so in this case
too the local dynamics is completely clear.

If |λ| = 1 and λ = e2π i p/q is a qth root of unity, then it is easy to prove that f
is (topologically, holomorphically or formally) linearizable if and only if f q = id;
therefore the linearization problem, that is deciding when f is linearizable, is mean-
ingful only when λ = e2π iθ with θ /∈ Q. Note that it is not difficult to show that every
germ with multiplier of this form is formally linearizable, and that it is topologically
linearizable if and only if it is holomorphically linearizable; so the main question
here is deciding whether a given germ is holomorphically linearizable or not—and, in
particular, whether this question can be solved just by examining the multiplier.

The main result in this area is due to Brjuno [20–22] and Yoccoz [73,74]. To state
it, let us introduce a bit of terminology and some notations.

Definition 5 We shall say that f ∈ End(C, O) is elliptic if its multiplier has mod-
ulus one but is not a root of unity; and that the origin is a Siegel point (respectively,
a Cremer point) if f is (respectively, is not) holomorphically linearizable.

Definition 6 For λ ∈ S1 and m ≥ 1 put

�λ(m) = min
1≤k≤m

|λk − λ|.

Clearly, λ is a root of unity (or λ = 0) if and only if�λ(m) = 0 for all m greater than
or equal to some m0 ≥ 1; furthermore, if |λ| �= 0, 1 then �λ(m) is bounded away
from zero, whereas if |λ| = 1 then

lim
m→+∞�λ(m) = 0.

We shall say that λ ∈ S1, not a root of unity, satisfies the Brjuno condition (or that λ
is a Brjuno number) if

+∞∑

k=0

1

2k
log

1

�λ(2k+1)
< +∞. (1)

Remark 2 There are several equivalent reformulations of the Brjuno condition, as the
convergence of other series involving �λ, or as the convergence of a series involving
the continuous fraction expansion of θ ; see, e.g., [61,67,74].

We can then state the famous Brjuno–Yoccoz theorem:

Theorem 1 (Brjuno [20–22], Yoccoz [73,74]) Let λ ∈ S1, not a root of unity. Then
the following statements are equivalent:

(i) the origin is a Siegel point for the quadratic polynomial fλ(z) = λz + z2;
(ii) the origin is a Siegel point for all f ∈ End(C, 0) with multiplier λ;

(iii) the number λ satisfies the Brjuno condition.
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266 M. Abate

This theorem has two aspects. From one side, it gives a necessary and suffi-
cient condition on λ ensuring that all local dynamical systems with multiplier λ are
holomorphically linearizable. However, there clearly exist holomorphically lineariz-
able germs whose multiplier does not satisfy the Brjuno condition: it suffices to take
a germ of the form f (z) = ϕ−1

(
λϕ(z)

)
, where ϕ is a local biholomorphism and λ is

not a Brjuno number.
One the other hand, Theorem 1 says that in the family of quadratic polynomials

a given germ is holomorphically linearizable if and only if its multiplier is a Brjuno
number. This observation immediately leads to the first open problem of this survey:

(OP1) Find families { fλ,a(z) = λz + z2ga(z)}a∈M ⊂ End(C, O) of elliptic discrete
holomorphic dynamical systems such that fλ,a is holomorphically linearizable
if and only if λ is a Brjuno number. For instance, is it true that an elliptic poly-
nomial is holomorphically linearizable if and only if its multiplier is a Brjuno
number? Or, even more specifically, is it true that an elliptic cubic polynomial
is holomorphically linearizable if and only if its multiplier is a Brjuno number?

In this context, it might be useful to remember the following dichotomy due to
Il’yashenko and Perez-Marco:

Theorem 2 (Il’yashenko [45], Perez-Marco [55]) Given g ∈ End(C, O) and λ ∈ C
∗

not a root of unity, put

fλ,a = λz + azg(z)

for all a ∈ C. Then:

(i) either the origin is a Siegel point of fλ,a for all a ∈ C, or
(ii) the origin is a Cremer point of fλ,a for all a ∈ C \ K , where K ⊂⊂ C is a

bounded exceptional set of capacity (and hence Lebesgue measure) zero.

2.2 Regularity of the Brjuno function

There is a different way of expressing the Brjuno condition, leading to another inter-
esting open problem.

Given θ ∈ [0, 1) set

r(θ) = inf{r( f ) | f ∈ End(C, 0) is defined and injective in�

and has multipliere2π iθ },

where� ⊂ C is the unit disk and r( f ) ≥ 0 is the radius of convergence of the unique
formal linearization of f with multiplier 1.

On the other hand, given an irrational number θ ∈ [0, 1) let {pk/qk} be the sequence
of rational numbers converging to θ given by the expansion in continued fractions,
and put
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αn = − qnθ − pn

qn−1θ − pn−1
, α0 = θ,

βn = (−1)n(qnθ − pn), β−1 = 1.

Definition 7 The Brjuno function B : [0, 1) \ Q → (0,+∞] is defined by

B(θ) =
∞∑

n=0

βn−1 log
1

αn
.

Then Yoccoz has proved the following quantitative relationship between the infi-
mum r(θ) of the radii of convergence and the Brjuno function:

Theorem 3 (Yoccoz [74])

(i) B(θ) < +∞ if and only if λ = e2π iθ is a Brjuno number;
(ii) there exists a universal constant C > 0 such that

| log r(θ)+ B(θ)| ≤ C

for all θ ∈ [0, 1) \ Q such that B(θ) < +∞;
(iii) if B(θ) = +∞ then there exists a non-linearizable f ∈ End(C, 0) with multi-

plier e2π iθ .

The Brjuno function is clearly quite an irregular function, diverging at a Gδ-dense
set of irrational numbers. A surprising fact is that, on the contrary, numerical experi-
ments (see, e.g., [26] and references therein) as well as theoretical results (see [50])
suggest that log r + B is more regular, even better than continuous. More specifically,
Marmi, Mattei and Yoccoz proposed the following problem:

(OP2) Does log r + B admit a 1/2-Hölder continuous extension to [0, 1)?

2.3 Classification of Cremer points

The local dynamics about a Siegel point is completely clear. The local dynamics about
a Cremer point, on the other hand, is extremely complicated. The best results up to
now are due to Perez-Marco and Biswas:

Theorem 4 (Pérez-Marco [53,54]) Assume that 0 is a Cremer point for an elliptic
discrete holomorphic local dynamical system f ∈ End(C, 0). Then:

(i) The stable set K f is compact, connected, full (i.e., C \ K f is connected), it is
not reduced to {0}, and it is not locally connected at any point distinct from the
origin.

(ii) Any point of K f \ {0} is recurrent (that is, a limit point of its orbit).
(iii) There is an orbit in K f which accumulates at the origin, but no non-trivial orbit

converges to the origin.
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268 M. Abate

Theorem 5 (Biswas [13]) The multiplier and the conformal class of the stable set K f

are a complete set of holomorphic invariants for Cremer points. In other words, two
elliptic non-linearizable holomorphic local dynamical systems f and g are holomor-
phically locally conjugated if and only if they have the same multiplier and there is a
biholomorphism (not necessarily conjugating the dynamics) of a neighborhood of K f

with a neighborhood of Kg.

Surprisingly enough, the topological classification of Cremer points is still open.
Clearly, the homeomorphism class of the (germ at the origin of the) stable set is a
topological invariant; moreover, a non-trivial theorem due to Naishul (see [54] for
another proof) shows that the multiplier is another topological invariant:

Theorem 6 (Naishul [52]) Let f, g ∈ End(C, O) be two elliptic discrete holomor-
phic local dynamical systems. If f and g are topologically locally conjugated then
f ′(0) = g′(0).

Thus a natural open question in this context is:

(OP3) Are the multiplier and the homeomorphism class of the stable set a complete
set of topological invariants for discrete holomorphic local dynamical systems
in End(C, O) having a Cremer point at the origin?

2.4 Effective classification of parabolic germs

Definition 8 A local dynamical system f ∈ End(C, 0) is parabolic if its multiplier
is a root of unity; it is tangent to the identity if its multiplier is 1.

Clearly, if f ∈ End(C, 0) is parabolic then a suitable iterate f q is tangent to the
identity; so most dynamical questions for parabolic systems can be reduced to the
study of tangent to the identity germs.

A qualitative description of the dynamics of tangent to the identity germs is given
by the famous Leau-Fatou flower theorem. To state it we need to recall a couple of
definitions:

Definition 9 Let f ∈ End(C, 0) \ {id} be tangent to the identity, and thus of the form

f (z) = z + ar+1zr+1 + O(zr+2)

with ar+1 �= 0, where r + 1 ≥ 2 is the multiplicity of f . A unit vector v ∈ S1 is an
attracting (respectively, repelling) direction for f at the origin if ar+1v

r is real and
negative (respectively, positive).

Clearly, there are r equally spaced attracting directions, separated by r equally
spaced repelling directions. Furthermore, a repelling (attracting) direction for f is
attracting (repelling) for f −1, which is defined in a neighborhood of the origin.

It turns out that to every attracting direction is associated a connected component
of K f \ {0}.
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Definition 10 Let v ∈ S1 be an attracting direction for an f ∈ End(C, 0) tangent
to the identity. The basin centered at v is the set of points z ∈ K f \ {0} such that
f k(z) → 0 and f k(z)/| f k(z)| → v (notice that, up to shrinking the domain of f , we
can assume that f (z) �= 0 for all z ∈ K f \ {0}). If z belongs to the basin centered at v,
we shall say that the orbit of z tends to 0 tangent to v.

An attracting petal centered at an attracting direction v of f is an open simply
connected f -invariant set P ⊆ K f \ {0} such that a point z ∈ K f \ {0} belongs to the
basin centered at v if and only if its orbit intersects P . In other words, the orbit of a
point tends to 0 tangent to v if and only if it is eventually contained in P . A repelling
petal (centered at a repelling direction) is an attracting petal for the inverse of f .

Then:

Theorem 7 (Leau [47], Fatou [35–37]) Let f ∈ End(C, 0) be a discrete holomorphic
local dynamical system tangent to the identity with multiplicity r + 1 ≥ 2 at the fixed
point. Let v+

1 , . . . , v
+
r ∈ S1 be the r attracting directions of f at the origin, and

v−
1 , . . . , v

−
r ∈ S1 the r repelling directions. Then

(i) for each attracting (repelling) direction v±
j there exists an attracting (repelling)

petal P±
j , so that the union of these 2r petals is a pointed neighborhood of the

origin. Furthermore, the 2r petals are arranged cyclically so that two petals
intersect if and only if the angle between their central directions is π/r .

(ii) K f \ {0} is the (disjoint) union of the basins centered at the r attracting direc-
tions.

(iii) If B is a basin centered at one of the attracting directions then there is a function
ϕ : B → C such that ϕ ◦ f (z) = ϕ(z)+ 1 for all z ∈ B. Furthermore, if P is
the corresponding petal constructed in part (i), then ϕ|P is a biholomorphism
with an open subset of the complex plane containing a right half-plane—and
so f |P is holomorphically conjugated to the translation z → z + 1.

Starting from this theorem, Camacho [24] and, independently, Shcherbakov [68]
have completed the topological classification of germs tangent to the identity, showing
that the multiplicity is a complete set of topological invariants:

Theorem 8 (Camacho [24], Shcherbakov [68]) Assume that f ∈ End(C, 0) is a
holomorphic local dynamical system tangent to the identity with multiplicity ν ≥ 2.
Then f is topologically locally conjugated to g(z) = z + zν .

Furthermore, the formal classification is obtained with not too difficult a computa-
tion, and a complete set of invariants is given by the multiplicity and another complex
number, the index, explicitly computable.

On the other hand, the holomorphic classification is incredibly more difficult.
Écalle [30–33] and, independently, Voronin [71] have given a complete set of invari-
ants, consisting in the multiplicity, the index, and a functional invariant, an equivalence
class of functions with specific properties constructed starting from the biholomor-
phisms introduced in Theorem 7.(iii). This set of invariants is not only complete but also
full, in the sense that every possible value of the invariants is realized by a germ tangent
to the identity; however, to explicitly compute Écalle-Voronin functional invariant is
an almost impossible task. In particular, the following problem is still open:
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270 M. Abate

(OP4) Give an effective procedure for deciding whether two germs tangent to the
identity are holomorphically locally conjugated.

Clearly, a similar question can be asked for parabolic germs; in that case another
(topological, formal and holomorphic) invariant is the multiplier, and one has to replace
the multiplicity by a suitably defined parabolic multiplicity, and the index by a suit-
ably defined parabolic index (or, better yet, by Écalle’s iterative residue). Then the
multiplier and the parabolic multiplicity are a complete set of topological invariants,
the multiplier, the parabolic multiplicity and the iterative residue are a complete set of
formal invariants, and adding suitably adjusted Écalle-Voronin functional invariants
one obtains a complete set of holomorphic invariants. Again, most of the times the
computation of the functional invariants is hopeless, and thus we have the following
generalization of the previous question:

(OP4′) Give an effective procedure for deciding whether two parabolic germs are
holomorphically locally conjugated.

See also [45,48,49] and [51] for alternative presentations of Écalle-Voronin invariants.

3 Several complex variables

We have seen how in one complex variable the multiplier (that is, the derivative at
the fixed point) plays a fundamental role. In several complex variables instead of the
multiplier we may consider the eigenvalues of the differential at the fixed point, and
give a first classification of discrete holomorphic local dynamical systems based on
them. Clearly there are many cases to consider, and correspondingly many ways to
precise the five basic questions stated in the introduction. Here we shall limit our-
selves to a selection of some important open problems focusing on four main classes
of systems: non-invertible, tangent to the identity, linearizable, and mixed systems.

A piece of terminology we shall systematically use is the following:

Definition 11 The homogeneous expansion of a f ∈ End(Cn, O) is the expansion

f (z) =
∑

j≥c( f )

Pj (z)

where c( f ) ≥ 1 is the order of f , and Pj is an n-tuple of homogeneous polynomials
of degree j (and we are of course assuming that Pc( f ) �≡ O). Furthermore, we shall
say that f is dominant if det Jac( f ) �≡ O .

3.1 Non-invertible systems: asymptotic attraction rate

A discrete holomorphic local dynamical system f ∈ End(Cn, O) is invertible if and
only if the differential d fO is; therefore f is non-invertible if and only if 0 is an eigen-
value of d fO . In particular, we shall also say that f is superattracting if d fO ≡ O ,
i.e., if c( f ) ≥ 2.
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There are a couple of interesting open questions (suggested by Mattias Jonsson)
about the sequence {c( f k)}k∈N. In dimension 1 it is easy to see that c( f k) = c( f )k

for all k ≥ 1, and thus c( f k)1/k = c( f ) for all k ≥ 1. On the other hand, in dimension
2 or more we only have

c( f h+k) ≥ c( f h)c( f k) (2)

for all h, k ∈ N, and the inequality can be strict. Consider for instance a germ f ∈
End(C2, O) whose linear term is non-zero but nilpotent; then we have c( f ) = 1 but
c( f 2) ≥ 2.

Nevertheless, (2) implies the existence of the asymptotic attraction rate defined by
the limit

c∞( f ) = lim
k→+∞ c( f k)1/k,

which is a basic (formal and holomorphic, at least) invariant of f . Contrarily to
the dimension one case, c∞( f ) is not necessarily an integer. However, Favre and
Jonsson [39] have proved the following

Theorem 9 (Favre–Jonsson [39]) Let f ∈ End(C2, O) be non-invertible and domi-
nant. Then c∞ = c∞( f ) is a quadratic integer, i.e., there exist integers a, b ∈ Z such
that c2∞+ac∞+b = 0. Moreover, there exists δ ∈ (0, 1] such that δck∞ ≤ c( f k) ≤ ck∞
for all k ≥ 1.

This result clearly suggests an open problem:

(OP5) Let f ∈ End(Cn, O) be non-invertible and dominant. Is it true that c∞ =
c∞( f ) is an algebraic integer of order at most n, i.e., there are integers
a0, . . . , an−1 ∈ Z such that cn∞ + ak−1ck−1∞ + · · · + a0 = 0? Moreover, does
there exist δ ∈ (0, 1] such that δck∞ ≤ c( f k) ≤ ck∞ for all k ≥ 1?

Roughly speaking, the order of a germ may be thought of as a sort of analog of the
degree of a polynomial map: the former somewhat measure the rate of attraction of
the origin, while the latter measure the rate of attraction of infinity. For the sequence
of the degree of the iterates of a polynomial map, Favre and Jonsson [40] have proved
the following

Theorem 10 (Favre–Jonsson [40]) Let F : C
2 → C

2 be a polynomial map. Then the
sequence {deg F j } j∈N satisfies a linear recursion formula with integer coefficients.

We can then wonder whether a similar property holds for the sequence of orders of
the iterates of a germ:

(OP6) Let f ∈ End(Cn, O) be non-invertible and dominant. Is it true that the
sequence {c( f k)}k∈N satisfies, at least for k large enough, a linear recursion
formula with integer coefficients?
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272 M. Abate

3.2 Non-invertible systems: classification

We have already remarked that in dimension 1 every non-invertible germ of order k
is holomorphically conjugated to zk , by Böttcher’s theorem. In several variables, this
is not true: for instance, as first remarked by Hubbard and Papadopol [44], the map
F(z, w) = (z2 + w3, w2) cannot be, even topologically, locally conjugated to the
homogeneous quadratic map H(z, w) = (z2, w2). Indeed, both maps have as critical
locus (which is topologically defined) the union of the two axes; however the union
of the two axes is H -invariant but not F-invariant. More precisely, the critical value
set of H is the union of the two axes, whereas the critical value set of F is the union
of the z-axis with the curve z2 = w3.

Definition 12 Given f ∈ End(Cn, O), we shall denote by

Crit( f ) = {det(d f ) = 0}

the set of critical points of f , and by

PCrit( f ) =
⋃

k≥0

f k(Crit( f )
)

the postcritical set of f .

The postcritical set of a homogeneous map is a cone; thus a superattracting germ
f can be topologically (respectively, holomorphically) locally conjugated to a homo-
geneous map only if its postcritical set is a topological (respectively, analytic) cone,
that is the image of a standard cone under a local homeomorphism (respectively,
biholomorphism). Buff, Epstein and Koch [23] have proved that this condition is also
sufficient when the homogeneous map is non-degenerate:

Theorem 11 (Buff-Epstein-Koch, 2011 [23]) Let f ∈ End(Cn, O) be a superat-
tracting germ, and let H : C

n → C
n be the first non-vanishing term, of degree c =

c( f ), in the homogeneous expansion of f . Assume that H is non-degenerate, that is
H−1(O) = {O}. Then the following assertions are equivalent:

(i) f is holomorphically locally conjugated to H;
(ii) there is a germ of holomorphic vector field ξ with ξ(p) = p+o(‖p‖) as p → O

and such that d f ◦ ξ = c ξ ◦ f ;
(iii) there is a germ of holomorphic vector field ζ tangent to the postcritical set of f

and such that ζ(p) = p + o(‖p‖) for p → O;
(iv) the postcritical set of f is an analytic cone.

This result immediately prompts three open problems:

(OP7) Let f ∈ End(Cn, O) be a superattracting germ, and let H be the first non-
zero term in the homogeneous expansion of f . Assume that H is degenerate,
that is there exists v ∈ C

n \ {O} such that H(v) = O . Is it still true that if
the postcritical set of f is an analytic cone then f is holomorphically locally
conjugated to H?
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(OP8) Let f ∈ End(Cn, O) be a superattracting germ, and let H be the first non-
zero term in the homogeneous expansion of f . Assume that the postcritical set
of f is a topological cone nearby the origin. Under which conditions is then
f topologically locally conjugated to H? In particular, is this true when H is
non-degenerate?

(OP9) Let f, g ∈ End(Cn, O) be two superattracting germs, with c( f ) = c(g). Is
it true that f and g are topologically (respectively, holomorphically) locally
conjugated if and only if their postcritical sets are topologically (respectively,
holomorphically) conjugated, that is, there is a local homeomorphism (respec-
tively, biholomorphism) sending the postcritical set of f onto the postcritical
set of g?

Concerning instead the classification problem with respect to the formal conju-
gacy, Abate and Raissy in [8] gave a formal classification of superattracting germs
f ∈ End(C2, O) of order 2. The methods described there can in principle be used
to attack the general formal classification problem; here we limit ourselves to a more
specific question:

(OP10) Classify with respect to formal conjugation the superattracting germs f ∈
End(Cn, O) of order 2 when n ≥ 3, or of order 3 when n = 2.

3.3 Non-invertible systems: rigidification

Asking for a holomorphic classification of non-invertible germs is possibly too much;
on the other hand, a birational classification has been obtained by Favre, Jonsson and
Ruggiero at least in dimension 2. Let us introduce a bit of terminology to explain their
results.

Definition 13 Given f ∈ End(M, p), set

Crit∞( f ) =
⋃

k≥0

f −k(Crit( f )
) =

⋃

k≥0

Crit( f k).

We say that f weakly rigid if Crit∞( f ), as a germ at the origin, is composed by
0 ≤ q ≤ dim M smooth irreducible components, having a simple normal crossing
at the origin. If f is weakly rigid and W1, . . . ,Wq are the irreducible components of
Crit∞( f ), we shall say that f is rigid if moreover for each j = 1, . . . , q there exists
I j ⊆ {1, . . . , q} such that f (W j ) = ⋂

i∈I j
Wi .

Invertible germ, because Crit∞( f ) = ∅, and non-dominant germs, because Crit∞
( f ) = M , are trivially rigid; so this notion is interesting only for non-invertible
dominant germs.

Definition 14 A modification of a complex n-dimensional manifold M is a surjective
holomorphic mapπ : M̃ → M obtained as composition of a finite number of blow-ups
of submanifolds (or points); in particular, a modification is a birational isomorphism.
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The modification is based at a point p0 if the first blow-up is made along a subman-
ifold of M containing p0, and subsequent blow-ups are made along submanifolds
intersecting the inverse image of p0.

In dimension 2 Favre–Jonsson [39] and Ruggiero [66] have proved that every (non-
invertible dominant) germ is birationally conjugated to a rigid germ:

Theorem 12 (Favre–Jonsson [39], Ruggiero [66]) For every f ∈ End(C2, O) there
exist a modification π : M̃ → C

2 based at O, a point p ∈ E = π−1(O) and a rigid
holomorphic germ f̃ ∈ End(M, p) so that π ◦ f̃ = f ◦ π .

Since Favre [38] has classified 2-dimensional (non-invertible dominant) rigid
germs, this result gives birational normal forms for non-invertible dominant germs.

Of course, one would like to extend these results at least to dimension 3, and thus
we can add two more open problems to the list:

(OP11) Classify 3-dimensional non-invertible dominant rigid germs.
(OP12) Under which conditions on f ∈ End(C3, O) there exist a modification

π : M̃ → C
3 based at O, a point p ∈ E = π−1(O) and a (possibly weakly)

rigid holomorphic germ f̃ ∈ End(M, p) so that π ◦ f̃ = f ◦ π?

It should be mentioned that the latter problem is somewhat related to a non-dynam-
ical result by Cutkosky [28]:

Theorem 13 (Cutkosky [28]) Let f : X → Y be a dominant morphism of algebraic
3-varieties over C. Then there exist: modifications φ : X̃ → X and ψ : Ỹ → Y , with
X̃ and Ỹ non-singular; simple normal crossing divisors DỸ in Ỹ and DX̃ in X̃; and
a morphism f̃ : X̃ → Ỹ such that the diagram

X̃
f̃ ��

φ

��

Ỹ

ψ

��
X

f �� Y

commutes, DX̃ = f̃ −1(DỸ ) and f̃ is toroidal with respect to DX̃ and DỸ (i.e., f̃ is
locally given by monomials in suitable étale local parameters on X̃).

3.4 Parabolic systems: Fatou flower

Our next topic is the dynamics of parabolic systems, where the differential is unipotent;
more precisely we are interested in tangent to the identity germs, that is holomorphic
local dynamical systems f ∈ End(Cn, O) of the form

f (z) = z + Pν(z)+ Pν+1(z)+ · · · ∈ C0{z1, . . . , zn}n, (3)

where Pν is the first non-zero term in the homogeneous expansion of f , and ν ≥ 2 is
the multiplicity of f .
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Of course, the first thing one would like to do is to find a several variables version
of the Leau-Fatou flower theorem. To describe the right generalization, we have to
introduce a few concepts.

Definition 15 Let f ∈ End(Cn, O) be tangent at the identity and of multiplicity ν.
A characteristic direction for f is a non-zero vector v ∈ C

n\{O} such that Pν(v) = λv

for some λ ∈ C. If Pν(v) = O (that is, λ = 0) we shall say that v is a degenerate char-
acteristic direction; otherwise, (that is, if λ �= 0) we shall say that v is non-degenerate.

Characteristic directions always exist, and it is not difficult to show (see, e.g., [9])
that a generic f has exactly (νn − 1)/(ν − 1) characteristic directions, counted with
respect to a suitable multiplicity.

The notion of characteristic directions has a dynamical origin. Indeed, it is possible
to prove (see, e.g., [42]) that if an orbit { f k(z0)} of a germ f ∈ End(Cn, O) tangent to
the identity converges to the origin tangentially to a direction [v] ∈ P

n−1(C)—that is
f k(z0) → O in C

n and [ f k(z0)] → [v] in P
n−1(C), where [·] : C

n \{O} → P
n−1(C)

is the canonical projection—then v is a characteristic direction of f .
We can now introduce the several variables analogue of petals: parabolic curves.

Definition 16 A parabolic curve for f ∈ End(Cn, O) tangent to the identity of
multiplicity ν ≥ 2 is an injective holomorphic map ϕ : � → C

n \ {O} satisfying the
following properties:

(a) � is a simply connected domain in C with 0 ∈ ∂�;
(b) ϕ is continuous at the origin, and ϕ(0) = O;
(c) ϕ(�) is f -invariant, and ( f |ϕ(�))k → O uniformly on compact subsets as

k → +∞.

Furthermore, if [ϕ(ζ )] → [v] in P
n−1(C) as ζ → 0 in�we shall say that the parabolic

curve ϕ is tangent to the direction [v] ∈ P
n−1(C).

Finally, a Fatou flower tangent to a direction [v] is a set of ν − 1 parabolic curves
tangent to [v], with domains the connected components of a set of the form Dδ,ν =
{ζ ∈ C | |ζ ν−1 − δ| < δ} for δ > 0 small enough.

Then the first main generalization of the Leau-Fatou flower theorem to several
complex variables is due to Écalle and Hakim (see also [72]):

Theorem 14 (Écalle, 1985 [33]; Hakim, 1998 [42]) Let f ∈ End(Cn, O) be a germ
tangent to the identity, and [v] ∈ P

n−1(C) a non-degenerate characteristic direction.
Then there exists (at least) a Fatou flower for f tangent to [v].

This result applies to germs tangent to the identity having non-degenerate charac-
teristic directions; however, it is easy to find examples of germs having only degenerate
characteristic directions. In dimension 2 it is possible to get Fatou flowers in this case
too (see also [19]):

Theorem 15 (Abate [2]) Every germ f ∈ End(C2, O) tangent to the identity, with
the origin as an isolated fixed point, admits at least one Fatou flower tangent to some
direction.
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The proof works in dimension 2 only, and this leads to our next open problem:

(OP13) Is it true that every germ f ∈ End(Cn, O) tangent to the identity, with the
origin as an isolated fixed point, admits at least one Fatou flower tangent to
some direction?

Some partial results are presented in [9] and [63], showing however that the analogy
with the local dynamics of holomorphic vector fields that guided the proof of Theo-
rem 15 breaks down when n ≥ 3; so apparently new ideas are needed.

3.5 Parabolic systems: classification

Theorems 14 and 15 describe the dynamics only on 1-dimensional subsets of an
n-dimensional space, and so are very far from determining the dynamical behavior of
a tangent to the identity germ in a full neighborhood of the origin.

Now, it is possible to attach to each characteristic direction (see [33] and [43] for the
non-degenerate case, and [5–7,11] for the general case) n − 1 numbers, called direc-
tors or indices (actually, directors and indices are not the same numbers, but they are
strongly related; see, again, [6] and [11]), that can be useful to describe the behavior
in a neighborhood of the Fatou flowers. For instance, Hakim [43] (see also [12]) has
proved that if all the directors at a non-degenerate characteristic direction have positive
real part then the Fatou flower is attracting, that is there is an open neighborhood of the
Fatou flower consisting of points whose orbit is converging to the origin tangentially to
the given characteristic direction. On the other hand, there are examples (see, e.g., [11]
and references therein) of germs having orbits converging to the origin without being
tangent to any direction, as well as of germs having periodic orbits arbitrarily close to
the origin (a phenomenon that cannot happen in dimension 1). Thus in general the sta-
ble set is larger than the set of points with orbits converging to the origin tangentially to
some direction; however, in the known examples the presence of “anomalous” points
in the stable set seems again related to the indices, and in particular to the existence
of purely imaginary indices.

Anyway, the natural open problem here is:

(OP14) Describe, using characteristic directions, directors, indices and possibly other
invariants, the stable set of a germ tangent to the identity in C

n .

See also [18] for some results on this problem when all directions are characteristic.
In [11] we started a systematic study of the local dynamics of a particularly impor-

tant class of dynamical systems tangent to the identity: time-1 maps of homogeneous
vector fields. Indeed, if we identify, as we can, a homogenous vector field in C

n of
degree ν ≥ 2 with a n-tuple Pν of homogeneous polynomials of degree ν then its
time-1 map is of the form

g(z) = z + Pν(z)+ O(‖z‖ν+1),

and thus it is tangent to the identity of multiplicity ν.
These germs are particularly important because of the following reformulation of

Camacho’s Theorem 8:
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Corollary 1 Let f ∈ End(C, 0) be a holomorphic local dynamical system tangent
to the identity with multiplicity ν at the fixed point. Then f is topologically locally
conjugated to the time-1 map of the homogeneous vector field zν ∂

∂z .

Thus in dimension one time-1 maps of homogeneous vector fields provide a
complete set of topological normal forms for germs tangent to the identity. This,
and the work done in [11], suggests the following open problem:

(OP15) Let f ∈ End(Cn, O) be given by

f (z) = z + Pν(z)+ O(‖z‖ν+1), (4)

and assume that all characteristic directions of f are non-degenerate. Is it
true that f is topologically locally conjugated to the time-1 map of the homo-
geneous vector field Pν?

The assumption on the characteristic directions is necessary. If v is a degenerate
characteristic direction for the time-1 map g of a homogeneous vector field Pν (that
is, Pν(v) = O) then the whole complex line Cv consists of zeroes of the vector field,
and thus it is pointwise fixed by g, whereas the fixed point set of a generic germ of the
form (4) consists of the origin only.

Concerning the formal classification, in his monumental work [33] Écalle has given
a complete set of formal invariants for holomorphic local dynamical systems tangent
to the identity with at least one non-degenerate characteristic direction. For instance,
he has proved the following

Theorem 16 (Écalle [33,34]) Let f ∈ End(Cn, O) be a holomorphic local dynamical
system tangent to the identity of multiplicity ν ≥ 2. Assume that

(a) f has exactly (νn − 1)/(ν − 1) distinct non-degenerate characteristic directions
and no degenerate characteristic directions;

(b) the directors of any non-degenerate characteristic direction are irrational and
mutually independent over Z.

Let [v] ∈ P
n−1(C) be a non-degenerate characteristic direction, and denote by

α1, . . . , αn−1 ∈ C its directors. Then there exist a unique ρ ∈ C and unique (up
to dilations) formal series R1, . . . , Rn ∈ C[[z1, . . . , zn]], where each R j contains only
monomials of total degree at least ν + 1 and of partial degree in z j at most ν − 2,
such that f is formally conjugated to the time-1 map of the formal vector field

X = 1

(ν − 1)(1 + ρzν−1
n )

⎧
⎨

⎩[−zνn + Rn(z)] ∂
∂zn

+
n−1∑

j=1

[−α j z
ν−1
n z j + R j (z)] ∂

∂z j

⎫
⎬

⎭ .

A natural question is how to complete the formal classification:

(OP16) Find formal normal forms and invariants for germs tangent to the identity
having (possibly only) degenerate characteristic directions.

Partial results on this problem can be find in [8,10,18].
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3.6 Parabolic systems: irregular singularities

In [11] we showed that the study of the dynamics of time-1 maps of n-dimensional
homogeneous vector fields can be reduced to the study of singular holomorphic folia-
tions in Riemann surfaces of P

n−1(C) and of geodesics for meromorphic connections
on Riemann surfaces (notice that a singular holomorphic foliation in P

1(C) is com-
pletely determined by its finite set of singular points, and so when n = 2 the problem
reduces to the study of geodesics for a meromorphic connection on P

1(C); this might
be the moral reason why the dynamics of germs tangent to the identity seems to be
substantially more complicated in dimension 3 or more than in dimension 2), and
in particular we were able to give a complete description of the dynamics in a full
neighborhood of the origin for a large class of 2-dimensional examples. Our study
suggested several questions worth of further study; let us just mention one of them.

We have already remarked that there are two kinds of characteristic directions: non-
degenerate and degenerate. Actually, as already noticed in [2] and exploited in [6,11],
we have to refine this classification because there are different types of degenerate
characteristic directions. To make things simpler, let us assume that n = 2 and take
a homogeneous vector field Q = (Q1, Q2) of degree ν ≥ 2. In [11] it is shown that
we can reduce the study of the dynamics of Q to the study of the dynamics of another
vector field, the geodesic field G, defined on the total space of a suitable line bundle on
P

1(C). In coordinates induced by the usual non-homogeneous coordinates centered
in [1 : 0] ∈ P

1(C) the geodesic field can be written as

G = g1(z)v
∂

∂z
+ (ν − 1)g2(z)v

2 ∂

∂v
(5)

where g1(z) = Q2(1, z)− zQ1(1, z) and g2(z) = Q1(1, z). In particular, v0 = (1, ζ0)

is a characteristic direction of Q if and only if g1(ζ0) = 0, and it is a degenerate
characteristic direction if and only if g1(ζ0) = g2(ζ0) = 0.

Let μ j (ζ0) ∈ N be the order of vanishing of g j at ζ0. Then we shall say that
the point with (z, v) coordinates given by (ζ0, 0)—which corresponds to the point
[1 : ζ0] ∈ P

1(C)—is

– an apparent singularity if μ1(ζ0) ≤ μ2(ζ0);
– a Fuchsian singularity if μ1(ζ0) = μ2(ζ0)+ 1; and
– an irregular singularity if μ1(ζ0) > μ2(ζ0)+ 1.

Then it is easy to see that non-degenerate characteristic directions are either Fuchsian
or irregular (whereas degenerate characteristic directions can be apparent, Fuchsian or
irregular), and it turns out that Fuchsian singularities withμ1 = 1 can be characterized
as the non-degenerate characteristic directions with non-zero director.

In [11] we found formal normal forms for G around all kinds of singularities,
but holomorphic normal forms only for apparent and Fuchsian singularities. Using
the holomorphic normal forms we were able to study in detail the local dynamics
of G about apparent and Fuchsian singularities (and thus the dynamics of Q around
the corresponding characteristic directions); but it is still open the study of the local
dynamics about irregular singularities. Thus we have another open problem:
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(OP17) Describe the local dynamics of a vector field G of the form (5) about an
irregular singularity (ζ0, 0).

See [70] for some results related to this topic.

Remark 3 We limited our presentation to germs tangent to the identity; but similar
results can be obtained and similar questions can be asked for germs whose differential
is represented by a Jordan matrix with 1 as only eigenvalues. However, in [1] is shown
that such germs are birationally conjugated (through a modification based at the origin)
to germs tangent to the identity, and so many questions can be reduced to the latter case.

3.7 Linearizable systems: Brjuno condition

In one variable we saw that every germ whose multiplier was not a root of unity
is formally linearizable. Now, λ ∈ C

∗ is a root of unity if and only if λq = λ for
some q ≥ 2; a similar (but more widespread) phenomenon might prevent formal
linearization in several variables too.

Definition 17 Given λ = (λ1, . . . , λn) ∈ C
n , a resonance for λ is a relation of the

form

λ
k1
1 · · · λkn

n − λ j = 0 (6)

for some 1 ≤ j ≤ n and some k1, . . . , kn ∈ N with k1 + · · · + kn ≥ 2. If λ1, . . . , λn

are the eigenvalues of the differential at the origin of f ∈ End(Cn, O) we shall say
that (6) is a resonance of f .

Resonances are the obstruction to formal linearization. Indeed, a standard computa-
tion shows that the coefficients of a formal linearization have in the denominators quan-
tities of the form λ

k1
1 · · · λkn

n −λ j ; in particular it follows that a germ f ∈ End(Cn, O)
with no resonances is always formally conjugated to its differential d fO , that is, it
is formally linearizable. It should be mentioned that however a given germ can be
formally (and even holomorphically) linearizable even in presence of resonances; see,
e.g., [57,58].

The Brjuno problem in several variables consists in deciding when a formal
linearization is actually convergent, keeping in mind that in absence of resonance
the formal linearization is unique, but in presence of resonances the formal lineariza-
tion if it exists is in general not unique; see [59–61] for a discussion (and much more)
of this problem in a general setting.

To describe the main results known on the Brjuno problem, let us introduce the
following definition:

Definition 18 For λ = (λ1, . . . , λn) ∈ C
n and m ≥ 2 set

�λ(m) = min
{|λk1

1 · · · λkn
n − λ j |

∣∣ k1, . . . , kn ∈ N, 2 ≤ k1 + · · · + kn ≤ m,

1 ≤ j ≤ n, λk1
1 · · · λkn

n �= λ j
}
. (7)

If λ1, . . . , λn are the eigenvalues of d fO , we shall write � f (m) for �λ(m).
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For some f ∈ End(Cn, O) it might well happen that

lim
m→+∞� f (m) = 0,

which is the reason why, even without resonances, the formal linearization might be
diverging, exactly as in the one-dimensional case.

Up to now the best result ensuring the convergence of a formal linearization is
the analogue of the Brjuno theorem, that is the implication (iii)�⇒(i) in Theorem 1,
proved by Brjuno [21,22] in absence of resonances and generalized by Rüssmann [67]
and Raissy [60] to the formally linearizable case:

Theorem 17 (Brjuno [21,22], Rüssmann [67], Raissy [60]) Let f ∈ End(Cn, O) be
a discrete holomorphic local dynamical system formally linearizable (e.g., without
resonances) and with d fO diagonalizable. Assume that

+∞∑

k=0

1

2k
log

1

� f (2k+1)
< +∞. (8)

Then f is holomorphically linearizable.

Remark 4 The assumption of diagonalizable differential is necessary. Indeed, Yoccoz
[74] has proved that for every A ∈ GL(n,C) such that its eigenvalues have no reso-
nances and such that its Jordan normal form contains a non-trivial block associated to
an eigenvalue of modulus one there exists f ∈ End(Cn, O) with d fO = A which is
not holomorphically linearizable.

Recalling Theorem 1 it is natural to ask whether condition (8) is necessary for the
holomorphic linearization of all germs having diagonalizable differential with given
eigenvalues. We can then state the following

(OP18) Let λ = (λ1, . . . , λn) ∈ C
n be such that

+∞∑

k=0

1

2k
log

1

�λ(2k+1)
= +∞.

Is it possible to find f ∈ End(Cn, O), with diagonalizable differential having
eigenvalues λ1, . . . , λn, which is formally linearizable but not holomorphi-
cally linearizable?

There are a couple of cases where a positive answer is known. For instance, it is
possible to adapt the classical one-variable construction of Cremer [27] and prove the
following

Theorem 18 Let λ = (λ1, . . . , λn) ∈ C be without resonances and such that

lim sup
m→+∞

1

m
log

1

�λ(m)
= +∞. (9)

Author's personal copy



Open problems in local discrete holomorphic dynamics 281

Then there exists f ∈ End(Cn, O), with d fO = diag(λ1, . . . , λn), not holomorphi-
cally linearizable.

This does not answer (OP17) because, exactly as in one variable, it is possible to
find λ ∈ C

n such that the limsup in (9) is finite but the series in (8) diverges.
Another easy situation is when one of the components of λ does not satisfy the

one-dimensional Brjuno condition. Indeed, if λ ∈ S1 does not satisfy (1) then any
f ∈ End(Cn, O) of the form

f (z) = (
λz1 + z2

1, g(z)
)

is not holomorphically linearizable, because if ϕ ∈ End(Cn, O) were a holomorphic
linearization of f then ψ(ζ ) = ϕ(ζ, O) would be a holomorphic linearization of the
quadratic polynomial λζ + ζ 2, against Theorem 1.

This again is not enough to solve (OP17) because there are n-tuples λ ∈ C
n formed

by complex numbers all individually satisfying the one-dimensional Brjuno condi-
tion (1) but not satisfying (8): for instance, takeλ ∈ S1 not a Brjuno number, 0 < |μ| <
1 and put λ1 = μ and λ2 = λμ−1. Clearly both λ1 and λ2 satisfy trivially (1), whereas

λk
1λ

k+1
2 − λ2 = μ−1(λk+1 − λ),

and thus it is easy to see that (λ1, λ2) does not satisfy (8).
We end this subsection with an open problem which is a recasting in this context

of our first open problem:

(OP19) Given λ = (λ1, . . . , λn) ∈ C
n , find families { fλ,a}a∈M ⊂ End(Cn, O) of

formally linearizable germs whose differential is represented by the diagonal
matrix of eigenvalues (λ1, . . . , λn) such that fλ,a is holomorphically linear-
izable if and only if λ satisfies (8). For instance, is it true that a germ of the
form f (z) = (λ1z1, λ2z2) + Q(z), where Q is a pair of quadratic homo-
geneous polynomials and (λ1, λ2) have no resonances, is holomorphically
linearizable if and only if (λ1, λ2) satisfy (8)?

3.8 Mixed systems

Another feature telling the several variable case apart from the one variable case is the
presence of mixed systems, where the eigenvalues of the differential are part hyper-
bolic, part elliptic and part parabolic. There has been a fair amount of work in this area,
mostly concerned with situations where the eigenvalues were contained in the closed
unit disk of the complex plane; see, e.g., [15–17,25,29,41,62,64,65,69] and refer-
ences therein. Among the many open problems in this area, four might be particularly
interesting.

The first two arise from the work of Bracci–Molino [15] and Rong [64]; for
simplicity I shall state them in dimension 2, but similar questions can be asked in
any dimension. Let f ∈ End(C2, O) be such that the eigenvalues of d fO are 1 and
λ = e2π iθ �= 1. Pöschel [56] has shown that if λ satisfies the Brjuno condition (1)
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then there exists a 1-dimensional f -invariant complex disk centered at the origin and
tangent to the eigenspace of λwhere f is conjugated to the irrational rotation of angle
2πθ ; Bracci and Molino (and Rong in dimension higher than 2) have instead studied
the existence of parabolic behavior (and, in particular, of parabolic curves) for such
germs. To summarize their results we need a definition:

Definition 19 Let f = ( f1, f2) ∈ End(C2, O) be a holomorphic germ such that
d fO = diag(1, λ) with λ = e2π iθ �= 1. We shall say that f is in ultra-resonant
normal form if the order of vanishing of f2(z1, 0) is at least equal to the order of
vanishing of f1(z1, 0) − z1. If f is in ultra-resonant normal form, we denote by
ν( f ) ≥ 2 the order of vanishing of f1(z1, 0) − z1, and we say that f is dynamically
separating if ν( f ) − 1 is less than or equal to the order of vanishing of f o

2 (z1, 0),
where f o

2 (z1, z2) = z−1
2

[
f2(z1, z2)− λz2 − f2(z1, 0)

]
.

We can summarize their result as follows:

Theorem 19 (Bracci–Molino [15]) Let f = ( f1, f2) ∈ End(C2, O) be a holomor-
phic germ such that d fO = diag(1, λ) with λ = e2π iθ �= 1. Then:

(i) up to local holomorphic conjugation we can always assume that f is in ultra-
resonant normal form;

(ii) if f is in ultra-resonant normal form, then ν( f ) and the property of being
dynamically separating are local holomorphic invariants of f ;

(iii) if f is in ultra-resonant normal form and dynamically separating then there
exist (at least) ν( f )− 1 parabolic curves for f at O tangent to the eigenspace
of 1.

Thus we can have the coexistence of invariant disks (elliptic behavior) and parabolic
curves. However, this begs the question of how the dynamics changes moving from
the one-dimensional invariant disk to the one-dimensional parabolic curves. More
precisely, our next open problem is

(OP20) Describe the local dynamics in a full neighborhood of the origin of a dynam-
ically separating f ∈ End(C2, O) in ultra-resonant normal form.

Clearly, a similar question can be asked for dynamically separating germs in C
n

with n ≥ 3; see [64] for the necessary definitions.
A closely related open problem is the following:

(OP20′) Describe the local dynamics in a full neighborhood of the origin of a germ
f ∈ End(C2, O) in ultra-resonant normal form but not dynamically sepa-
rating.

An interesting example has been worked out in detail in [64].
We have thus seen a situation where parabolic and elliptic behavior coexist, because

of the presence of an eigenvalue equal to 1. However, recently Bracci et al. [16] and
Bracci and Zaitsev [17] have made the very interesting discovery that, somewhat
surprising, more generally the existence of resonances might cause the appearance of
parabolic dynamics even when no eigenvalue is a root of unity. Their approach applies
to the so-called m-resonant germs.
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Definition 20 Given m ∈ N
∗, we say that λ = (λ1, . . . , λn) ∈ (C∗)n is m-resonant if

there exist m multi-indices P1, . . . , Pm ∈ N
n linearly independent over Q generating

over N all resonances for λ, in the sense that λs = ∏n
j=1 λ

k j
j if and only if there are

α1, . . . , αm ∈ N such that

(k1, . . . , kn) =
m∑

h=1

αh Ph + es,

where es is the s-th vector in the canonical basis of C
n .

A germ f ∈ End(Cn, O) with d fO diagonalizable is m-resonant if the set of
eigenvalues of d fO is.

If f ∈ End(Cn, O) is m-resonant, then it has a formal Poincaré–Dulac normal
form g = (g1, . . . , gn) of the following kind:

g j (z) = λ j z j +
∑

|α·P|≥1

aα, j z
α·Pz j , (10)

where α = (α1, . . . , αm) ranges in N
m , α · P = ∑m

h=1 αh Ph , and we are using the
usual multi-index notations zQ = zq1

1 · · · zqn
n and |Q| = q1 + · · · + qn for Q ∈ N

n .
The weighted order k0 of f is the minimal |α| such that aα, j �= 0 for some 1 ≤ j ≤ n;
it is a local formal (and hence holomorphic) invariant.

Expression (10) suggests introducing the holomorphic map π : C
n → C

m given by
π(z) = (z P1

, . . . , z Pm
). Indeed, we can find � ∈ End(Cm, O) whose homogeneous

expansion is of the form

�(u) = u + Hk0+1(u)+ O(‖u‖k0+2)

such that π ◦ g = � ◦ π . In particular, g is semi-conjugated to �, and g acts on the
foliation given by the level sets ofπ ; thus the dynamics of g must reflect the (parabolic)
dynamics of �.

The exact expression of � might depend on the choice of the Poincaré–Dulac for-
mal normal form g, that furthermore might not be holomorphically conjugated to f ;
but since f is holomorphically conjugated to g up to any fixed order, the dynamics of
the parabolic shadow of f

φ(u) = u + Hk0+1(u)

still can say a lot on the dynamics of f . For instance, φ describes the action of f on
the leaf space of (a foliation conjugated to) the foliation of the level sets of π up to
order k0 + 1.

As indicated before, to describe the local dynamics of a parabolic shadow one needs
the characteristic directions. A particularly important case is when a parabolic shadow
φ admits an attracting non-degenerate characteristic direction v, that is a non-degen-
erate characteristic direction whose directors have all positive real part (and thus the
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corresponding Fatou flower is attracting; see [43]). It turns out that this is a property of
the germ f , in the sense that if a parabolic shadow φ has an attracting non-degenerate
characteristic direction then every parabolic shadow of f has one.

If v is a non-degenerate characteristic direction for a parabolic shadow φ, up to scal-
ing we can assume that Hk0+1(v) = −(1/k0)v. We can then introduce the following
definition:

Definition 21 Let f ∈ End(Cn, O) be m-resonant. We say that f is parabolically
attracting if it admits a parabolic shadow φ having an attracting non-degenerate
characteristic direction [v] such that

Re

⎛

⎝
∑

|α|=k0

aα, j

λ j
vα

⎞

⎠ < 0

for j = 1, . . . , n, where v is the representative of [v] normalized so that Hk0+1(v) =
−(1/k0)v.

It turns out that if the condition in this definition is satisfied for one parabolic shadow
it is satisfied by all of them, and thus being parabolically attracting is a property of the
germ f and not of a particular parabolic shadow.

We are now able to state (a particular case of) the main result of [16]:

Theorem 20 (Bracci–Raissy–Zaitsev [16]) Let f ∈ End(Cn, O) be m-resonant of
weighted order k0, and parabolically attracting. Assume that all the eigenvalues
of d fO have modulus one. Then there exist (at least) k0 disjoint basins of attraction
with the origin in the boundary.

In analogy with previous problems, this result suggests the following open problem:

(OP21) Describe the local dynamics of a m-resonant parabolically attracting germ
f ∈ End(Cn, O) in a full neighborhood of the origin.

In [16] this has been done for 1-resonant parabolically attracting germs in Poin-
caré–Dulac normal form; but it still open for 1-resonant parabolically attracting germs
not in Poincaré–Dulac normal form, as well as for 2-resonant parabolically attracting
germs in Poincaré–Dulac normal form.

If λ ∈ (C∗)n is m-resonant, and (k1, . . . , kn) ∈ N are such that λk1
1 · · · λkn

n = λs ,
we in particular have ks ≥ 1. Let us give a name to this situation:

Definition 22 We shall say that λ ∈ (C∗)n is resonance effective if for every (k1, . . . ,

kn) ∈ N
n and 1 ≤ s ≤ n such that λk1

1 · · · λkn
n = λs we have ks ≥ 1.

If λ ∈ (C∗)n is resonance effective, then the set

Rese(λ) = {(h1, . . . , hn) ∈ N
n | λh1

1 · · · λhn
n = 1}

gives all the resonances of λ, in the sense that λk1
1 · · · λkn

n = λs if and only if
(k1, . . . , ks − 1, . . . , kn) ∈ Rese(λ).
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The set Rese(λ) is clearly closed under addition; then it is possible to prove (see [59])
that there exist a finite number of elements P1, . . . , Pm ∈ Rese(λ), called minimal (not
necessarily Q-linearly independent), and a finite number (possibly equal to zero) of
different elements C1, . . . ,Cr ∈ Rese(λ), called cominimal, such that every element
of Rese(λ) can be written either in the form α1 P1 + · · · + αm Pm or in the form
C j + α1 P1 + · · · + αm Pm for suitable α1, . . . , αm ∈ N and (in the second case)
1 ≤ j ≤ r . So the m-resonant case corresponds to resonance effective, no cominimal
elements and Q-linearly independent minimal elements. Our last open problem is then
the following:

(OP22) Given f ∈ End(Cn, O) locally invertible, let λ ∈ (C∗)n be the set of eigen-
values of d fO , and assume that λ is resonance effective. Is it possible to extend
Bracci–Raissy–Zaitsev results to the case when Rese(λ) has no cominimal
elements but has Q-linearly dependent minimal elements? And to the case
when Rese(λ) has cominimal elements?
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