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1 Introduction

Ch. Loewner

Charles Loewner was born

as Karel Löwner on 29

May 1893 in Lány, Bohemia.

He also used the German

spelling Karl of his first

name; indeed, although he

spoke Czech at home, all of

his education was in German.

Loewner received his PhD

from the University of Prague

in 1917 under the supervision

of George Pick; then he spent

some years at the Universi-

ties of Berlin and Cologne. In

1930, he returned to Charles

University of Prague as a pro-

fessor. When the Nazis occu-

pied Prague, he was put in jail. Luckily, after paying the “emi-

gration tax” he was allowed to leave the country with his fam-

ily and move, in 1939, to the US, where he changed his name

to Charles Loewner. Although J. von Neumann promptly ar-

ranged a position for him at Louisville University, he had to

start his life from scratch. In the United States, he worked

at Brown University, Syracuse University and eventually at

Stanford University, where he remained until his death on 8

January 1968.

Loewner’s work covers wide areas of complex analysis

and differential geometry, and displays his deep understand-

ing of Lie theory and his passion for semigroup theory; his

papers are nowadays cornerstones of the theory bearing his

name.

He began his research in the theory of conformal map-

pings. His most prominent contribution to this field was the

introduction of infinitesimal methods for univalent functions,

leading to the Loewner differential equations that are now a

classical tool of complex analysis. Loewner’s basic idea to

consider semigroups related to conformal mappings led him

to the general study of semigroups of transformations. In this

context he characterised monotone matrix transformations,

sets of projective mappings and similar geometric transfor-

mation classes.

Here we are mainly interested in Loewner’s early research

about the composition semigroups of conformal mappings and

in the developments (some quite recent) springing from his

work. Loewner’s most important work in this area is his 1923

paper [41] where he introduced the nowadays well-known

Loewner parametric method and the so-called Loewner differ-

ential equations, allowing him to prove the first non-elementary

case of the celebrated Bieberbach conjecture: if f is a univa-

lent function defined on the unit disc in the complex plane,

with expansion at the origin given by

f (z) = z + a2z2 + · · · + anzn + · · · ,

then |an| ≤ n for each n ≥ 1. Loewner was able to prove

that |a3| ≤ 3. It is well-known that the Bieberbach conjec-

ture was finally proven by L. de Branges [15] in 1985. In

his proof, de Branges introduced ideas related to Loewner’s

but he used only a distant relative of Loewner’s equation in

connection with his main apparatus, his own rather sophisti-

cated theory of composition operators. However, elaborating

on de Branges’ ideas, FitzGerald and Pommerenke [18] dis-

covered how to avoid altogether the composition operators

and rewrote the proof in classical terms, applying the bona
fide Loewner equation and providing in this way a direct and

powerful application of Loewner’s classical method.

The seminal paper [41] has been a source of inspiration

for many mathematicians and there have been many further

developments and extensions of the results and techniques in-

troduced there. This is especially true for the differential equa-

tions he first considered and this note will be a brief tour of the

development of Loewner’s theory and its several applications

and generalisations.

We would like to end this introduction by recalling that

one of the last (but definitely not least) contributions to this

growing theory was the discovery, by Oded Schramm in 2000

[49], of the stochastic Loewner equation (SLE), also known

as the Schramm-Loewner equation. The SLE is a conformally

invariant stochastic process; more precisely, it is a family of

random planar curves generated by solving Loewner’s differ-

ential equation with a Brownian motion as the driving term.

This equation was studied and developed by Schramm to-

gether with Greg Lawler and Wendelin Werner in a series

of joint papers that led, among other things, to a proof of

Mandelbrot’s conjecture about the Hausdorff dimension of

the Brownian frontier [36], [37]. This achievement was one

of the reasons Werner was awarded the Fields Medal in 2006.

Sadly, Oded Schramm, born 10 December 1961 in Jerusalem,

died in a tragic hiking accident on 01 September 2008 while

climbing Guye Peak, north of Snoqualmie Pass in Washing-

ton.

Quite recently, Stanislav Smirnov has also been awarded

the Fields Medal (2010) for his outstanding contributions to

SLE and the theory of percolation.

2 The slit radial Loewner equation

In his 1923 paper [41], Loewner proved that the class of single-

slit mappings (i.e. holomorphic functions mapping univalently



the unit disc D ⊂ C onto the complement in C of a Jordan

arc) is a dense subset of the class S of all univalent mappings

f in the unit disc normalised by f (0) = 0 and f ′(0) = 1. He

also discovered a method to parametrise single-slit maps. Let

g be a single-slit map whose image in C avoids the Jordan

arc γ : [0,+∞) → C. Loewner introduced the family (gt) of

univalent maps in D, indexed by the time t ∈ [0,+∞), where

g0 = g and gt is the Riemann mapping whose image is the

complement in C of the Jordan arc γ|[t,+∞). The family of do-

mains {gt(D)} is increasing, and as time goes to ∞ it fills out

the whole complex plane.

Loewner’s crucial observation is that the family (gt) can

be described by differential equations. More precisely, with a

suitable choice of parametrisation, there exists a continuous

function κ : [0,+∞) → ∂D, called the driving term, such that

(gt) satisfies

∂gt(w)

∂t
= w
κ(t) + w

κ(t) − w

∂gt(w)

∂w
. (2.1)

This equation is usually called the (slit-radial) Loewner PDE
(and it is the first one of several evolution equations we shall

see originated by Loewner’s ideas). Loewner also remarked

(and used) that the associated family of holomorphic self-

maps of the unit disc (ϕs,t) := (g−1
t ◦ gs) for 0 ≤ s ≤ t gives

solutions of the characteristic equation

dw

dt
= −w

κ(t) + w

κ(t) − w
(2.2)

subjected to the initial condition w(s) = z ∈ D. Equation (2.2)

is nowadays known as the (slit-radial) Loewner ODE. The

adjective “radial” in these names comes from the fact that the

image of each ϕs,t is the unit disc minus a single Jordan arc

approaching a sort of radius as t goes to ∞.

The two slit-radial Loewner equations can be studied on

their own without any reference to parametrised families of

univalent maps. Imposing the initial condition w(s) = z, the

Loewner ODE (2.2) has a unique solution wz
s(t) defined for

all t ∈ [s,+∞). Moreover, ϕs,t(z) := wz
s(t) is a holomorphic

self-map of the unit disc for all 0 ≤ s ≤ t < +∞. However,

without conditions on the driving term, the solutions of the

Loewner ODE are in general not of slit type. For instance, P.

P. Kufarev in 1947 gave examples of continuous driving terms

such that the solutions to (2.2) have subdomains of the unit

disc bounded by hyperbolic geodesics as image, and thus are

non-slit maps. The problem of understanding exactly which

driving terms produce slit solutions of (2.2) has become, and

still is, a basic problem in the theory. Deep and very recent

contributions to this question are due to J. R. Lind, D. E. Mar-

shall and S. Rhode [42], [39], [40]. See also [44] and refer-

ences therein.

3 The general radial Loewner equations

It is not easy to follow the historical development of the para-

metric method because in the middle of the 20th century a

number of papers appeared independently; moreover, some of

them were published in the Soviet Union, remaining partially

unknown to Western mathematicians. Anyhow, it is widely

recognised that the Loewner method was brought to its full

power by Pavel Parfen’evich Kufarev (Tomsk, 18 March 1909

P.P. Kufarev

– Tomsk, 17 July 1968)

and Christian Pommerenke

(Copenhagen, 17 Decem-

ber 1933).

Using slightly differ-

ent points of view, both

Kufarev and Pommerenke

merged Loewner’s ideas

with evolutionary aspects

of increasing families of

general complex domains.

Pommerenke’s approach

was to impose an ordering

on the images of univalent

mappings of the unit

disc, and it seems to have

been the first one to use

the expression “Loewner

chain" for describing the family of increasing univalent

mappings in Loewner’s theory. Kufarev [31] too studied

increasing families of domains and, although they were not

exactly Loewner chains in the sense of Pommerenke, his

theory bears some resemblance to the one developed by

Pommerenke [45].

A Loewner chain (in the sense of Pommerenke) is a fam-

ily ( ft) of univalent mappings of the unit disc whose images

form an increasing family of simply connected domains and

normalised imposing ft(0) = 0 and f ′t (0) = et for all t ≥ 0 (we

notice that as soon as ft(0) = 0 holds, the second normalising

condition can always be obtained by means of a reparametri-

sation in the time variable). The families of single-slit map-

pings originally considered by Loewner are thus a very par-

ticular example of Loewner chains.

Again, to a Loewner chain ( ft) we can associate a family

(ϕs,t) := ( f −1
t ◦ fs) for 0 ≤ s ≤ t of holomorphic self-maps of

the unit disc, and again both ( ft) and (ϕs,t) can be recovered

as solutions of differential equations. In fact, ( ft) satisfies the

(general) radial Loewner PDE

∂ ft(w)

∂t
= w p(w, t)

∂ ft(w)

∂w
, (3.1)

where p : D × [0,+∞) → C is a normalised parametric Her-
glotz function, i.e. it satisfies the following conditions:

– p(0, ·) ≡ 1.

– p(·, t) is holomorphic for all t ≥ 0.

– p(z, ·) is measurable for all z ∈ D.

– Re p(z, t) ≥ 0 for all t ≥ 0 and z ∈ D.

Analogously, (ϕs,t) satisfies the so-called (general) radial
Loewner ODE

dw

dt
= −w p(w, t), w(s) = z , (3.2)

where p again is a normalised parametric Herglotz function.

Since

Re
κ(t) + w

κ(t) − w
≥ 0

for all w and any driving term κ, equations (2.1) and (2.2)

are particular cases of (3.1) and (3.2); furthermore, in con-

trast with the slit case, the general radial Loewner equations

yield a one-to-one correspondence between Loewner chains

and normalised parametric Herglotz functions.



Ch. Pommerenke

Roughly speaking, differen-

tial equations such as (3.1) and

(3.2) are important because they

allow one to get estimates and

growth bounds for ft and ϕs,t

starting from the well-known es-

timates and growth bounds for

maps, such as p(z, t), having

image in the right half-plane.

For instance, in this way Pom-

merenke [45], and also [19],

[27], solved the “embedding problem”, showing that for any

f ∈ S it is possible to find a Loewner chain ( ft) such that

f0 = f . More general questions of embeddability in Loewner

chains satisfying specific properties are still open and this is

an active area of research.

Loewner’s and Pommerenke’s approaches to the paramet-

ric method work under the essential assumption that all the el-

ements of the chain fix a given point of the unit disc, usually

the origin. This is a natural hypothesis if one deals with in-

creasing sequences of simply connected domains, and it also

yields (up to a reparametrisation) good regularity in the time

parameter – a basic fact necessary for the derivation of the as-

sociated differential equations. However, in certain situations

related to some concrete physical and stochastic processes we

will discuss later, there is no fixed point in the interior, and a

similar role has to be played by a point on the boundary of the

unit disc. Because the geometry of the boundary of the unit

disc, the “infinity” of hyperbolic geometry, is quite different

from the geometry inside the unit disc, new phenomena ap-

pear, and it does not seem possible to deal with this case by

somehow appealing to the classical case. As a consequence,

new extensions of Loewner’s theory have been provided.

4 The chordal equation

In 1946, Kufarev [32] proposed an evolution equation in the

upper half-plane analogous to the one introduced by Loewner

in the unit disc. In 1968, Kufarev, Sobolev and Sporysheva

[33] established a parametric method, based on this equation,

for the class of univalent functions in the upper half-plane,

which is known to be related to physical problems in hydro-

dynamics. Moreover, during the second half of the past cen-

tury, the Soviet school intensively studied Kufarev’s equation.

We ought to cite here at least the contributions of I. A. Alek-

sandrov [2], S. T. Aleksandrov and V. V. Sobolev [4], V. V.

Goryainov and I. Ba [22, 23]. However, this work was mostly

unknown to many Western mathematicians, mainly because

some of it appeared in journals not easily accessible outside

the Soviet Union. In fact, some of Kufarev’s papers were not

even reviewed by Mathematical Reviews. Anyhow, we refer

the reader to [3], which contains a complete bibliography of

his papers.

In order to introduce Kufarev’s equation properly, let us

fix some notation. Let γ be a Jordan arc in the upper half-plane

H with starting point γ(0) = 0. Then there exists a unique

conformal map gt : H \ γ[0, t]→ H with the normalisation

gt(z) = z +
c(t)

z
+ O

(

1

z2

)

.

After a reparametrisation of the curve γ, one can assume that

c(t) = 2t. Under this normalisation, one can show that gt sat-

isfies the following differential equation:

∂gt(z)

∂t
=

2

gt(z) − h(t)
, g0(z) = z. (4.1)

The equation is valid up to a time Tz ∈ (0,+∞] that can be

characterised as the first time t such that gt(z) ∈ R and where

h is a continuous real-valued function. Conversely, given a

continuous function h : [0,+∞) → R, one can consider the

following initial value problem for each z ∈ H:

dw

dt
=

2

w − h(t)
, w(0) = z . (4.2)

Let t 7→ wz(t) denote the unique solution of this Cauchy prob-

lem and let gt(z) := wz(t). Then gt maps holomorphically a

(not necessarily slit) subdomain of the upper half-plane H

onto H. Equation (4.2) is nowadays known as the chordal
Loewner differential equation with the function h as the driv-

ing term. The name is due to the fact that the curve γ[0, t]
evolves in time as t tends to infinity into a sort of chord join-

ing two boundary points. This kind of construction can be

used to model evolutionary aspects of decreasing families of

domains in the complex plane.

For later use, we remark that using the Cayley transform

we may assume (working in an increasing context) that the

chordal Loewner equation in the unit disc takes the form

dz

dt
= (1 − z)2 p(z, t), z(0) = z, (4.3)

where Re p(z, t) ≥ 0 for all t ≥ 0 and z ∈ D.

O. Schramm

In 2000 Schramm [49] had

the simple but very effective

idea of replacing the func-

tion h in (4.2) by a Brown-

ian motion, and of using the re-

sulting chordal Loewner equa-

tion, nowadays known as the

SLE (stochastic Loewner equa-
tion) to understand critical pro-

cesses in two dimensions, relat-

ing probability theory to com-

plex analysis in a completely

novel way. In fact, the SLE was

discovered by Schramm as a

conjectured scaling limit of the planar uniform spanning tree

and the planar loop-erased random walk probabilistic pro-

cesses. Moreover, this tool also turned out to be very impor-

tant for the proofs of conjectured scaling limit relations on

some other models from statistical mechanics, such as self-

avoiding random walks and percolation.

5 Semigroups of holomorphic mappings

To each Loewner chain ( ft) one can associate a family of holo-

morphic self-maps of the unit disc (ϕs,t) := ( f −1
t ◦ fs), some-

times called transition functions or the evolution family. By

the very construction, an evolution family satisfies the alge-

braic property

ϕs,t = ϕu,t ◦ ϕs,u (5.1)

for all 0 ≤ s ≤ u ≤ t < +∞.



Special but important cases of evolution families are semi-

groups of holomorphic self-maps of the unit disc. A family

of holomorphic self-maps of the unit disc (φt) is a (contin-
uous) semigroup if φ : (R+,+) → Hol(D,D) is a continuous

homomorphism between the semigroup of non-negative real

numbers and the semigroup of holomorphic self-maps of the

disc with respect to composition, endowed with the topol-

ogy of uniform convergence on compact sets. In other words:

φ0 = idD; φt+s = φs ◦ φt for all s, t ≥ 0; and φt converges to

φt0 uniformly on compact sets as t goes to t0.

Setting ϕs,t := φt−s for 0 ≤ s ≤ t < +∞, it can be checked

that ϕs,t satisfies (5.1) and semigroups of holomorphic maps

provide examples of evolution families in the sense of Section

6.

Semigroups of holomorphic maps are a classical subject

of study, both as (local/global) flows of continuous dynami-

cal systems and from the point of view of “fractional itera-

tion”, the problem of embedding the discrete set of iterates

generated by a single self-map into a one-parameter family

(a problem that is still open even in the disc). It is difficult to

exactly date the birth of this notion but it seems that the first

paper dealing with semigroups of holomorphic maps and their

asymptotic behaviour is due to F. Tricomi in 1917 [53]. Semi-

groups of holomorphic maps also appear in connection with

the theory of Galton-Watson processes (branching processes)

started in the 40s by A. Kolmogorov and N. A. Dmitriev [28].

Furthermore, they are an important tool in the theory of strongly

continuous semigroups of operators between spaces of ana-

lytic functions (see, for example, [51]).

A very important contribution to the theory of semigroups

of holomorphic self-maps of the unit disc is due to E. Berkson

and H. Porta [9]. They proved that a semigroup of holomor-

phic self-maps of the unit disc (φt) is in fact real-analytic in

the variable t, and is the solution of the Cauchy problem

∂φt(z)

∂t
= G(φt(z)), φ0(z) = z , (5.2)

where the map G, the infinitesimal generator of the semi-

group, has the form

G(z) = (z − τ)(τz − 1)p(z) (5.3)

for some τ ∈ D and a holomorphic function p : D → C with

Re p ≥ 0.

The dynamics of the semigroup (φt) are governed by the

analytical properties of the infinitesimal generator G. For in-

stance, the semigroup has a common fixed point at τ (in the

sense of non-tangential limit if τ belongs to the boundary of

the unit disc) and asymptotically tends to τ, which can thus

be considered a sink point of the dynamical system generated

by G.

When τ = 0, it is clear that (5.3) is a particular case of

(3.2), because the infinitesimal generator G is of the form

−wp(w), where p is a (autonomous, and not necessarily nor-

malised) Herglotz function. As a consequence, when the semi-

group has a fixed point in the unit disc (which, up to a con-

jugation by an automorphism of the disc, amounts to taking

τ = 0), once differentiability in t is proved Berkson-Porta’s

theorem can be easily deduced from Loewner’s theory. How-

ever, when the semigroup has no common fixed points in the

interior of the unit disc, Berkson-Porta’s result is really a new

advance in the theory.

We have already remarked that semigroups give rise to

evolution families; they also provide examples of Loewner

chains. Indeed, M. H. Heins [29] and A. G. Siskasis [50] have

independently proved that if (φt) is a semigroup of holomor-

phic self-maps of the unit disc then there exists a (unique,

when suitably normalised) holomorphic function h : D → C,

the Königs function of the semigroup, such that h(φt(z)) =

mt(h(z)) for all t ≥ 0, where mt is an affine map (in other

words, the semigroup is semiconjugated to a semigroup of

affine maps). Then it is easy to see that the maps ft(z) :=

m−1
t (h(z)), for t ≥ 0, form a Loewner chain (in the sense ex-

plained in the next section).

The theory of semigroups of holomorphic self-maps has

been extensively studied and generalised: to Riemann sur-

faces (in particular, Heins [29] has shown that Riemann sur-

faces with non-Abelian fundamental group admit no non-trivial

semigroup of holomorphic self-maps); to several complex vari-

ables; and to infinitely dimensional complex Banach spaces,

by I. N. Baker, C. C. Cowen, M. Elin, V. V. Goryainov, P.

Poggi-Corradini, Ch. Pommerenke, S. Reich, D. Shoikhet, A.

G. Siskakis, E. Vesentini and many others. We refer to [10]

and the books [1] and [47] for references and more informa-

tion on the subject.

6 A general Loewner’s theory

Comparing the radial Loewner equation (3.2), the chordal

Loewner equation (4.3) and the Berkson-Porta decomposition

(5.3) for infinitesimal generators of semigroups, one realises

that for all fixed t ≥ 0 the maps appearing in Loewner’s the-

ory are infinitesimal generators of semigroups of holomorphic

self-maps of the unit disc. Therefore, one is tempted to con-

sider a general Loewner equation of the following form:

dz

dt
= G(z, t), z(0) = z, (6.1)

with G(·, t) being an infinitesimal generator for almost all fixed

t ≥ 0, as well as the associated general Loewner PDE:

∂ ft(z)

∂t
= −G(z, t)

∂ ft(z)

∂z
. (6.2)

Thanks to (5.3), when assuming G(0, t) ≡ 0 or G(z, t) of the

special chordal form, these equations coincide with those we

have already discussed, and hence they can be viewed as gen-

eral and unified Loewner equations (see, for example, [11]

and [14]).

As we have seen, Loewner introduced his theory to deal

with univalent normalised functions. Hence he put more em-

phasis on the concept of Loewner chains than on evolution

families, as did Pommerenke. An intrinsic study of evolution

families and of their relationship with other aspects of the the-

ory has not been carried out until recently; let us describe the

approach proposed in [11] and [14]. An evolution family of or-
der d ∈ [1,+∞] is a family (ϕs,t)0≤s≤t<+∞ of holomorphic self-

maps of the unit disc such that ϕs,s = idD, ϕs,t = ϕu,t ◦ ϕs,u for

all 0 ≤ s ≤ u ≤ t < +∞ and such that for all z ∈ D and for all

T > 0 there exists a non-negative function kz,T ∈ Ld([0, T ],R)

satisfying

|ϕs,u(z) − ϕs,t(z)| ≤
∫ t

u
kz,T (ξ) dξ (6.3)

for all 0 ≤ s ≤ u ≤ t ≤ T .



If ( ft) is a normalised Loewner chain (in the sense of Pom-

merenke) then the family (ϕs,t) := ( f −1
t ◦ fs) is an evolu-

tion family of order +∞: the regularity condition (6.3) (with

d = +∞) holds because ϕ′s,t(0) = es−t [45, Lemma 6.1]. Simi-

larly, one can show that the solutions of the chordal Loewner

ordinary differential equations satisfy (6.3). Hence, this con-

cept of evolution families of order d is a natural generalisation

of the evolution families appearing in the classical Loewner

theory. We also remark that, although it is not assumed in the

definition, it turns out that maps belonging to an evolution

family are always univalent.

Associated to evolution families of order d there are Her-

glotz vector fields of order d ∈ [1,+∞]. These are time-

dependent vector fields G(z, t) that are measurable in t for

all fixed z, are holomorphic infinitesimal generators of semi-

groups for almost all fixed t and are such that for each com-

pact set K ⊂ D and all T > 0 there exists a non-negative

function kK,T ∈ Ld([0, T ],R) so that

|G(z, t)| ≤ kK,T (t)

for all z ∈ K and almost all t ∈ [0, T ]. Once again, the vec-

tor fields introduced in classical Loewner theory satisfy these

conditions, with d = +∞.

In [11] it is proved that there is a one-to-one correspon-

dence between evolution families (ϕs,t) of order d and Her-

glotz vector fields G(z, t) of order d, and the bridge producing

such a correspondence is precisely (6.1), namely,

∂ϕs,t

∂t
(z) = G(ϕs,t(z), t), ϕs,s(z) = z. (6.4)

Moreover, a Herglotz vector field G(z, t) admits a Berkson-

Porta-like decomposition. Namely, there exists a function p : D×
[0,+∞)→ C satisfying

– z 7→ p(z, t) is holomorphic for all t ∈ [0,+∞).

– Re p(z, t) ≥ 0 for all z ∈ D and almost all t ∈ [0,+∞].

– t 7→ p(z, t) ∈ Ld
loc

([0,+∞],C) for all z ∈ D.

and a measurable function τ : [0,+∞]→ D such that

G(z, t) = (z − τ(t))(τ(t)z − 1)p(z, t) . (6.5)

Conversely, any vector field of the form (6.5) is a Herglotz

vector field. Notice that when τ ≡ 0 (respectively, τ ≡ 1)

equation (6.4) (via (6.5)) reduces to (3.2) (respectively, to

(4.3)) and when G(z, t) does not depend on t it reduces to the

semigroup equation (5.2).

In the classical theory, every Loewner chain can be ob-

tained from a normalised evolution family (ϕs,t) by taking

fs(z) := lim
t→∞

etϕs,t(z). (6.6)

In [14], a new definition of Loewner chains was introduced,

allowing one to reproduce the relationship between Loewner

chains and evolution families in this more general context.

A family of univalent maps ( ft) in the unit disc is said to be

a Loewner chain of order d if the ranges ft(D) form an in-

creasing family of complex domains and for any compact set

K ⊂ D and any T > 0 there exists a non-negative function

kK,T ∈ Ld([0, T ],R) such that

| fs(z) − ft(z)| ≤
∫ t

s
kK,T (ξ)dξ

for all z ∈ K and all 0 ≤ s ≤ t ≤ T . Exploiting the (classical)

parametric representation of univalent maps (6.6), it can be

proved that there is a one-to-one (up to composition with bi-

holomorphisms) correspondence between evolution families

of order d and Loewner chains of the same order, related by

the equation

fs = ft ◦ ϕs,t. (6.7)

An alternative functorial method to create Loewner chains

from evolution families, which also works on abstract com-

plex manifolds, has been introduced in [5].

Once the previous correspondences are established, given

a Loewner chain ( ft) of order d, the general Loewner PDE

(6.2) follows by differentiating the structural equation (6.7).

Conversely, given a Herglotz vector field G(z, t) of order d,

one can build the associated Loewner chain (of the same order

d), solving (6.2) by means of the associated evolution fam-

ily.

The Berkson-Porta decomposition (6.5) of a Herglotz vec-

tor field G(z, t) also gives information on the dynamics of the

associated evolution family. For instance, when τ(t) ≡ τ ∈ D,

the point τ is a (common) fixed point of (ϕs,t) for all 0 ≤
s ≤ t < +∞. Moreover, it can be proved that, in such a case,

there exists a unique locally absolutely continuous function

λ : [0,+∞) → C with λ′ ∈ Ld
loc([0,+∞),C), λ(0) = 0 and

Reλ(t) ≥ Re λ(s) ≥ 0 for all 0 ≤ s ≤ t < +∞ such that for all

s ≤ t
ϕ′s,t(τ) = exp(λ(s) − λ(t)).

A similar characterisation holds when τ(t) ≡ τ ∈ ∂D [11].

7 Applications and extension of Loewner’s

theory

Loewner’s theory has been used to prove several deep results

in various branches of mathematics, even apparently unre-

lated to complex analysis. In this last section we briefly high-

light some of these applications and extensions, referring to

the bibliography for more information and details. Necessar-

ily, the list of topics we have chosen to present is rather in-

complete and only reflects our personal tastes and, certainly,

we have not tried to give an exhaustive picture of them. For

a more comprehensive view of the theory we strongly recom-

mend the monographs [16] and [46].

Extremal problems

After Loewner and E. Peschl, the first to apply Loewner’s

method to extremal problems in the theory of univalent func-

tions was G. M. Goluzin, obtaining in an elegant way several

new and sharp estimates. The most important of them is the

sharp estimate for the so-called rotation theorem (estimate of

the argument of the derivative – see [20], [21]).

As already recalled, the main conjecture solved with the

help of Loewner’s theory is the Bieberbach conjecture.

Loewner himself proved the case n = 3; P. R. Garabedian and

M. Schiffer in 1955 solved the case n = 4; M. Ozawa in 1969

and R. N. Pederson in 1968 solved the case n = 6; and Ped-

erson and Schiffer in 1972 solved n = 5. Finally, in 1985, L.

de Branges [15] proved the full conjecture and, as already re-

marked, FitzGerald and Pommerenke [18] gave an alternative

proof explicitly based on Loewner’s method. In both cases,

the main point was proving the validity of the Milin conjec-

ture. Previously, Milin had shown, using the Lebedev-Milin



inequality, that his conjecture implied the Bieberbach conjec-

ture (see, for example, [16] for details). This is just a short and

incomplete list of the many mathematicians who have worked

on this and related problems; Loewner’s method is by now

an important analytical device, which generates a number of

sharp inequalities not accessible by other means (see, for ex-

ample, [16]).

Univalence criteria

To obtain practical criteria ensuring univalence of conformal

maps is a basic and fundamental problem in complex analy-

sis. Perhaps the most famous criterion of this type is due to Z.

Nehari [43]. He showed that an estimate on the Schwarzian

derivative ( f ′′/ f ′)′ − 1
2
( f ′′/ f ′)2 implies the univalence of f

in the unit disc. Later, P. L. Duren, H. S. Shapiro and A.

L. Shields observed that an estimate on the pre-Schwarzian

f ′′/ f ′ implies Nehari’s estimate and therefore implies univa-

lence. Then, J. Becker [8] found a totally different approach

based on Loewner’s equation to show that a weaker estimate

on the pre-Schwarzian implies univalence. In the same paper,

Becker also applied Loewner’s equation to give an indepen-

dent derivation of Nehari’s criterion. In fact, many univalence

criteria have later been reproved using Loewner’s method;

and this approach sometimes provided further insight. We re-

fer the reader to [25, Chapter 3] and [46] for further informa-

tion.

Optimisation and Loewner chains

The variational method is a standard way to deal with ex-

tremal problems in a given class of functions. Roughly speak-

ing, this means that one can try and get information on an

extremal function by comparing it with nearby elements in

the given class. The larger the family of perturbations, the

more relevant the information one obtains. One example of

this kind is the class of normalised univalent functions in the

unit disc, which, as we already know, are “reachable” by the

class of Loewner chains, and this approach has been applied

to optimal control theory.

Variational methods were pioneered in the late 1930s by

M. Schiffer and independently by G. M. Goluzin. Schiffer

wrote a paper in 1945 that applied a variational method to

Loewner’s equation, the first introduction of a technique later

refined as “optimal control”. In particular, coefficient extremal

problems for univalent functions as optimal control problems

for finite-dimensional control systems have been treated by I.

A. Aleksandrov and V. I. Popov, G. S. Goodman, S. Friedland

and M. Schiffer, and D. V. Prokhorov, and later developed in

an infinite dimensional setting by O. Roth [48].

Stochastic Loewner equation

As mentioned in the introduction, this equation was intro-

duced by Schramm in 2000, replacing the driving term in the

radial and chordal Loewner equation with a Brownian motion.

In particular, the (chordal) stochastic Loewner evolution with

parameter k ≥ 0 (SLEk) starting at a point x ∈ R is the ran-

dom family of maps (gt) obtained from the chordal Loewner

equation (4.1) by letting h(t) =
√

kBt, where Bt is a stan-

dard one dimensional Brownian motion such that
√

kB0 = x.

Similarly, one can define a radial stochastic Loewner evolu-

tion.

The SLEk depends on the choice of the Brownian mo-

tion and it comes in several flavours depending on the type of

Brownian motion exploited. For example, it might start at a

fixed point or start at a uniformly distributed point, or might

have a built in drift and so on. The parameter k controls the

rate of diffusion of the Brownian motion and the behaviour of

the SLEk critically depends on the value of k.

The SLE2 corresponds to the loop-erased random walk

and the uniform spanning tree. The SLE8/3 is conjectured to

be the scaling limit of self-avoiding random walks. The SLE3

is conjectured to be the limit of interfaces for the Ising model,

while the SLE4 corresponds to the harmonic explorer and the

Gaussian free field. The SLE6 was used by Lawler, Schramm

and Werner in 2001 [36], [37] to prove the conjecture of Man-

delbrot (1982) that the boundary of planar Brownian motion

has fractal dimension 4/3. Moreover, Smirnov [52] proved the

SLE6 is the scaling limit of critical site percolation on the tri-

angular lattice. This result follows from his celebrated proof

of Cardy’s formula.

Also worthy of mention is the work of L. Carleson and

N. G. Makarov [13] studying growth processes motivated by

DLA (diffusion-limited aggregation) via Loewner’s equations.

The expository paper [35] is perhaps the best option to

start an exploration of this fascinating branch of mathemat-

ics.

Hele-Shaw flows

One of the most influential works in fluid dynamics at the

end of the 19th century was that of Henry Selby Hele-Shaw.

A Hele-Shaw cell is a tool for studying the two-dimensional

flow of a viscous fluid in a narrow gap between two parallel

plates. Nowadays the Hele-Shaw cell is used as a powerful

tool in several fields of natural sciences and engineering, in

particular soft condensed matter physics, material sciences,

crystal growth and, of course, fluid mechanics.

In 1945, P. I. Polubarinova-Kochina and L. A. Galin intro-

duced an evolution equation for conformal mappings related

to Hele-Shaw flows. Kufarev and Vinogradov in 1948 refor-

mulated this equation in the form of a non-linear (even non-

quasilinear) integro-differential equation of Loewner type. De-

spite apparent differences, these two equations have some ev-

ident geometric connections and the properties of Loewner’s

equations play a fundamental role in the study of Polubarinova-

Galin’s equation. Moreover, this close relationship has sug-

gested the interesting problem of analysing when the solu-

tions of Loewner’s equations admit quasiconformal extensions

beyond the closed unit disc, a problem studied by J. Becker,

V. Ya. Gutlyanskiı̆, A. Vasil’ev and others [8], [26, Chapters

2, 3 and 4].

A nice monograph on Hele-Shaw flows from the point of

view of complex analysis, discussing in particular their con-

nection with the Loewner method, is [26] (see also [54]).

Extensions to multiply connected domains

I. Komatu, in 1943 [30], was the first to generalise Loewner’s

parametric representation to univalent holomorphic functions

defined in a circular annulus and with images in the exterior

of a disc. Later, G. M. Goluzin [20] gave a much simpler way

to establish Komatu’s results. With the same techniques, E. P.

Li [38] considered a slightly different case, when the image



of the annulus is the complex plane with two slits (ending at

infinity and at the origin, respectively).

Another way of adapting Loewner’s method to multiply

connected domains was developed by P. P. Kufarev and M. P.

Kuvaev [34]. They obtained a differential equation satisfied

by automorphic functions realising conformal covering map-

pings of the unit disc onto multiply connected domains with a

gradually erased slit. Roughly speaking, these results can be

considered a version for multiply connected domains of the

slit-radial Loewner equation.

Recently, and in a similar way, R. O. Bauer and R. M.

Friedrich have developed a slit-chordal theory for multiply

connected domains. Moreover, they have even dealt with stochas-

tic versions of both the radial and the chordal cases. In this

framework the situation is more subtle than in the simply

connected case, because moduli spaces enter the picture [6],

[7].

Extension to several complex variables

As far as we know, the first to propose a Loewner theory in

several complex variables was J. Pfaltzgraff, who in 1974 ex-

tended the basic Loewner theory to Cn with the aim of obtain-

ing bounds and growth estimates for some classes of univa-

lent mappings defined in the unit ball of Cn. The theory was

later developed by T. Poreda, I. Graham, G. Kohr, M. Kohr,

H. Hamada and others [25], [24], [17], [12].

In [12], using an equation similar to (6.4), it is proved

that there is a one-to-one correspondence between evolution

families of order ∞ and Herglotz vector fields of order ∞
on complete hyperbolic complex manifolds whose Kobayashi

distance is smooth enough (as it happens, for instance, in

bounded strongly convex domains of Cn).

A clear description of Loewner chains in several complex

variables is not yet available. Most of the literature in higher

dimensions is devoted to the radial Loewner equation (and

its consequences) on the unit ball of complex Banach spaces,

mainly Cn. The theory is definitely much more complicated

than in dimension one; for instance, the class of normalised

univalent mappings on the unit ball of Cn is not compact,

and thus one is forced to restrict attention to suitable compact

subclasses. Anyway, many natural cases, such as spiral-like

maps, can be treated efficiently and many applications and

estimates can be obtained [25].

However, in general, there is not yet a satisfactory answer

to the question of whether it is possible to associate to an

evolution family (or a Herglotz vector field) on the unit ball

of Cn a Loewner chain with image in Cn solving a Loewner

PDE. Keeping in mind the interpretation of Loewner chains

as “time-dependent linearisation” for evolution families, it is

clear that resonances among eigenvalues of the differentials at

the common fixed point(s) have to play a role.
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